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Abstract
Fatigue increases the tendency of poor train driving strategy decision. Decision making in cognitive overload and cognitive 

underload situation mostly outputs bad decisions. Accordingly, train driver’s cognitive function is required to be sTable during travel 
so that they can give correct response at a given situation. This study constructs a conceptual framework for cognitive workload ma
nagement (CWM) of train driver by taking the energy expenses from cognition into the account. This study combines objective and 
subjective cognitive workload analysis to evaluate train driver duty readiness. The objective load analysis was performed through en-
ergy level approximation based on neuronal dynamics simulation from 76 brain regions. The cognitive energy expenditure (CEE) cal-
culated from neuron action potential (NAP) and the ion-membrane current (IMC) from the simulation results. The cognitive load (CL) 
approximated by converts the continuous time-based CEE to discrete frequency-based CL using Fourier series. The subjective cog-
nitive workload obtained from train simulation results followed by 27 participants. The participants fill the questionnaire based on 
their simulated journey experience. The results of the evaluation used to build readiness evaluation classifier based on control chart. 
The control chart evaluation helps the management to determine weekly rest period and daily short rest period treatment base on 
each train driver workload. The CWM framework allows different recovery treatment to be applied to each train driver. The impact 
of the CWM application is the performance of train drivers are kept stable. Thus, the CWM framework based on CEE is useful to 
prevent physical and mental fatigue.
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1. Introduction
The human factor (HF) is a safety-contributing factor in non-autonomous land transporta-

tion such as a train. Reportedly, HF accounts for 37 % railway accidents in United States and 27 % 
in Indonesia from 2005 to 2020 [1, 2]. The data confirms that railway safety is tied to train driver HF.  
The link between railway safety and HF is the decision. Mainly, train drivers have to decide driving 
strategy while driving. The train driving process requires train drivers to perform cognitive tasks. 
Hence, maintaining focus throughout the journey is mandatory to ensure a train driver makes 
the correct decision. A usual strategy to maintain train driver focus is point-and-call (PC) when  
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a driver receives visual signals. However, PC does not reduce the subjective mental workload indi-
cating it has no contribution to maintaining train driver energy level [3]. Actually, the ability to focus 
while performing a cognitive task is highly related to energy level. The train driver with lower energy 
levels due to fatigue tends to choose a risky driving strategy [4]. Consequently, the journey is not only 
less safe but also more costly due to the higher energy consumption. This study aims to construct  
a conceptual framework of cognitive workload management (CWM) based on cognitive energy ex-
penditure (CEE) to ensure the train driver choosing the safe driving strategy throughout the journey.

Different from the technical factors, HF is hardly manageable through an ordered activity 
such as logging, timely check, and planned maintenance. The overall control of an HF’s biologi-
cal and psychological aspects is impossible. Current safety standard operational procedure (SOP) 
enforces a train driver to follow basic health checks and fatigue assessment before embarkation is 
allowed [5]. However, the SOP only accounts physiological factors and resides the train driver state 
of mind readiness to perform cognitive tasks. Meanwhile, HF consists of physiological and psycho-
logical factor. Moreover, cognitive task is not only a psychological task but also a physiological task.  
The indication of the cognitive task as a physiological task is the increase in thermogenesis of 
a worker in a sedentary workstation without involving physical activity [6]. Thermogenesis is  
a biological body heat generation process from basal metabolism (obligatory thermogenesis) or  
a response to physiological work (facultative thermogenesis) [7]. Accordingly, cognitive task in-
duces facultative thermogenesis. Hence, tracking the energy expenditure of cognitive and physical 
workloads is critical to ensure overall safety.

Physiologically, the neuron action potential (NAP) can track the energy expenditure while 
someone performing a cognitive task. NAP or neuron membrane potential is an electrical impulse 
that passes the collection of information within an Axon from dendrites along the nerves [8]. The sen-
sory perception of stimulation sends signals through synaptic terminals. The signal transmitter neu-
ron terminal called presynaptic terminal while the receiving neuron terminal called postsynaptic. The 
resulting phenomenon is called a firing neuron which requires about +70 mv for depolarization. 
Depolarization is a process of shifting neuron membrane cell electrochemical gradient from a rest-
ing membrane potential (RMB) of –70 mV to pass 0 mV. The constant activation from the presyn-
aptic neurons gradually depolarizes postsynaptic neuron. As a result, hyperpolarization may occur 
as the electrochemical gradient of the postsynaptic neuron exceeds 30mV and fallback to below the 
RMB [9]. The input signals trigger depolarization and are regulated by voltage-gate and mechanic- 
gate protein ion channels with a proton pump to control extracellular and intracellular ion exchange. 
A requirement to operate the pump is the energy in the form of Adenosine triphosphate (ATP). 
The ion-exchange is a homeostasis mechanism to maintain neuron cell balance [10]. Therefore, 
the energy expenditure pathway of cognition is through the ion pumps switching mechanism.

Besides the cognition energy expenditure (CEE), the condition of cognitive underload and 
overload affects train driver performance. The Train driver task classification study using multi-re-
source model framework classifies train driver cognition during the operation [11]. The results 
show a train driver may perform multiple cognition processes including spatial, auditory, and ver-
bal at the same time and immediately switch to motoric task. Meanwhile during long distance jour-
ney, a train driver is more likely to idle while maintaining speed. Hence, a train driver is prone to 
cognitive overload and underload. Cognitive overload overwhelms the train driver which increases 
the probability of cognition error [12]. On the other hand, cognitive underload is a condition where 
the train driver only performs simple tasks with few or no repetition [13]. The train driver work-
load study of on-train-data-recorder (OTDR) shows the use of OTDR to directly evaluate the task 
performance of a train driver [14]. Instead of evaluating performance, this study use OTDR data to 
calculate workload of a train driver as the basis to determine next duty readiness. 

Train driver’s CW is one of the driving strategy quality indicators. Functional near-infra-
red spectroscopy (fNIRS) measurement of train drivers’ cerebral oxygenic blood flow (oxy-Hb) 
reveals manual train operation increases prefrontal cortex activity compare to automatic train ope
ration [15]. The more sophisticated model uses machine learning (ML) to identify a train driver’s 
cognitive state according to a biophysical marker such as an EEG or Electrooculography (EOG).  
The less intrusive system with fastest ensemble ML algorithm allows the placement of EEG 
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electrodes on forehead only [16]. However, the personal movement restriction still exists, mak-
ing the system remain intrusive. This study proposes non-intrusive cognitive workload manage-
ment (CWM) through neuronal dynamics approximation of train driver brain regional activity.

This study expands the [14] train driver cognitive task analysis from OTDR data by rating the 
synaptic energy usage during cognitive task performance. The task classification was according to 
the multi-resource model as previously done by [11]. As a result, this study proposes a cognitive ener
gy tracking (CET) model to track cognitive auditory, spatial, and verbal task CEE. The implementa-
tion of the CET model in this study focuses on the train driver’s CWM. The developed CET model 
can be a low cost and more practically applicable CWM as an alternative to more sophisticated EEG-
based CWM developed by [16]. The CWM also support train driver readiness evaluation (DRE) 
system to evaluate duty readiness of a train driver based on the CET and driver mental condition.

2. Materials and Method
2. 1. Train driving operation data collection
The data to evaluate the CEE approximation model and cognitive load analysis was obtained 

from the secondary sources and simulation. The train driver operation secondary data was collec
ted from the Virgin train on-train-data-recorder (OTDR) reported by [17]. The train driver actions 
record from the OTDR was listed. The observed tasks were control, signal sending and receiving, 
horns, gear shift, braking, close or open doors, cabin light switching, headlight switching, and com-
munications. The cognitive workload was the number of the discrete performed tasks in a certain 
continuous time duration that measured as task (k) over time (min). This study evaluates the task 
in duration of 66 minutes.

2. 2. Brain region simulation
The brain region simulation was performed using The Virtual Brain (TVB) software ver-

sion 2.4.1. TVB is brain white-matter track simulator software that simulates the neuronal dynamics 
phenomenon on brain cortical surface or regions [18]. The simulation in this study was run with 
6000ms length using generic 2D oscillator model. The generic 2D oscillator is a simple oscillator 
harmonic oscillator model to simulate physical system [19]. TVB use the oscillator to simulate NAP 
state vector denoted with V and IMC state vector denoted with W. The oscillator parameter setup 
is shown in Table 1. The simulated brain connectivity was the TVB built in 76 region connectivity 
consists of the right and left hemisphere. The region covers some prefrontal cortex, some auditory, 
motor, visual, association areas, amygdala, and the full region list can be found in the TVB study [20]. 
The region stimulus signal was made using a pulse train function with onset of 10.0, fire period (T) 
of 100.0 ms, fire duration (tau) of 10.0 ms, and amplitude of 1.0. The maximum NAP of each region 
was set to maximum of 20 mV for excitatory regions and –65 mV for the inhibitory regions. The 
information about the excitatory and inhibitory regions was obtained from [21–25]. Therefore, the 
stimulus indicates a fully working brain which represents the point and call procedure.

2. 3. CWM framework testing and evaluation
The test and evaluation aim was to ensure the capability of the developed CWM framework 

to ensure the capability of the framework as the basis to train driver HF evaluation. The evaluation 
on the impact of cognitive load to energy level and motivation was performed. The test was by  
a train simulator testing followed by 27 participants. The participants were asked to play a Microsoft 
train simulator in 30 minutes coupled with Open rail V1.4 software to log the train driving activity 
data. The simulator journey was a single station passenger activity along Hisatsu Line, Kyushu Is-
land, Japan in a clear weather condition using a Japanese diesel-hydraulic train KiHa 31 series. The 
tasks throughout the journey were not requiring significant attention and complex action. How
ever, the events occurrences such as crossing animals and another train passing by were set random. 
Hence, the journey designation was to measure the participants’ emotional adaptation in a cognitive 
underload situation. After playing the simulator, the participants were asked to fill a questionnaire 
regarding to their cognitive experience during the simulation journey (Appendix A). The test was 
open for experienced and inexperienced participant to measure the impact of task novelty and task 
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structures. The test result is the basis to determine control limit and the task classification system 
for the CWM framework which applies to various cognitive job redesigns. The descriptive statistics 
summary of the questionnaire responses is provided in the. The variables at the head of the Table 1 
represent each question in the questionnaire. The participants’ age was ranging from 20 to 42 years 
old with 4 respondents under 26 years old, 7 respondents in between 26–27 years old, 2 respon-
dents 29 years old, and 12 respondents between 35–42 years old. The participants were predom-
inantly male consists of 25 from 27 participants with only 2 females. The participants consists of 
4 rail hobbyists, 19 with experience of playing train simulator, and 4 neither with experience of 
playing train simulator nor having rail knowledge.

Table 1
Descriptive statistics of the questionnaire response

− Age Gen-
der

Expe
rience

Over-
whelmed Bored part_over-

whelmed
minutes_over-

whelmed
part_
bored

ready_
again

regular_
duty_ready

mood_
change

Valid 27 27 27 27 27 27 27 27 27 27 27
Missing 0 0 0 0 0 0 0 0 0 0 0
Mean 32.519 0.074 2.222 0.481 0.815 2.741 4.259 1.926 0.704 1.741 1.444

Std. Deviation 6.908 0.267 0.934 0.509 0.396 1.196 7.236 1.385 0.609 1.130 1.188
Minimum 20.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
Maximum 42.000 1.000 4.000 1.000 1.000 6.000 30.000 5.000 2.000 4.000 4.000

The questionnaire responses and some ideal boundary conditions were used to design duty 
readiness evaluator (DRE). All DRE techniques were design and tested using JASP software. The 
variables types in the Table 1 were rescaled from the nominal to scale and ordinal variables. The 
text questionnaire responses were converted to ordinal number by numbering each response in 
order from 0 to the last responses. The multiple responses (checkbox answers) were converted 
by adding each choice ordinal number. The target variables of the DRE were willingness to take 
similar cognitive load in daily basis (represented by regular_duty_ready variable) and readiness to 
continue the ongoing cognitive activity (represented by ready_again variable). Prior to DRE build-
ing, the average cognitive load of each participant was included in the dataset. Also, some ideal 
boundary conditions to direct the DRE model were added to the dataset. The ideal boundary was 
the condition during extreme underload, extreme overload, and normal load, which predicTable but 
does not understood by the model. The DRE implementation was using X-mR control chart, which 
built using JASP software for human-to-human assessment.

2. 4. Cognitive task energy formulation
The simulated signal consists of two state variables which is neuron action potential (NAP) 

denoted by V and IMC denoted by (W). W is an electrical current passing across the neuron cell 
membrane which equivalent to the number of charges noted as in equation (1), (2). The NAP in 
equation (3), (4) is the electrical voltage of brain signals across the post-synaptic terminal. Because 
the voltage represents the energy to move each charge (q) as denoted in equation (3), the number of 
charge at a time is modeled as in equation (5). The unit equivalency is denoted by the equation (6).

Let,

	 I
q

t
= ( )C s ,	 (1)

	 I W= ( ) mC s ,	 (2)

and

	 V
E

q
= ( )J C ,	 (3)
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	 V V= ( ) mJ mC ,	 (4)

	 q Wt= ( ) mC ,	 (5)

	 1 1mJ mC mV( ) = ( ).	 (6)

In,

	 CTL
Ch V

Ch
=

× ( )∑
∑



mV ,	 (7)

where

	 E CTL q= × ( )mJ .	 (8)

CTL is the cognitive task load voltage derived from the average connectivity channel region 
denoted with Ch. The energy expense on each cognitive task calculated using equation (8) as the 
multiplication between average cognitive task load and the simulated brain signal charge. Hence, 
the equation (8) is the approximated CEE.

2. 5. Cognitive load determination from CEE
The cognitive overload and underload phenomenon only describable through discrete equa-

tion since the tasks were discrete. However, the tasks were performed in continuous time-space so 
that the energy expenditure is continuous as in equation (9). Therefore, the (9) transform to (10) 
through the application of Fourier series:

	 tCL
dE

dt( ) = ( )mJ s .	 (9)

Continuous time (t) discrete frequency (number tasks performed) conversion using Fou
rier series. The application of Fourier series in this study was through a scientific Python program-
ming language package Scipy using the fft submodule. The Scipy fft equation is directly applied 
so the k = −∞ +∞, ,  at the discrete CL is as shown in equation (10):

	 k t
j t

p

CL CL e t( ) ( )
−= ( )∫ ω d mJ k

0

.	 (10)

With is the number of performed tasks in the continuous time-space.
Since the wave properties of CL is the result of NAP evolution pattern, the generic 2D 

oscillator properties is applicable in transformation equation (10). The properties is adjusTable to 
another simulation equation models such as Kuramoto, Hopfield, Wong-Wang, Stefaniscu-Jirsa, or 
the real brainwave recording data such as electroenchepalography (EEG). The sigmoid function  
in equation (11) transforms the range of k to between 0 and 1:

	 Sig CL
ek x( )( ) =

+
1

1
,	 (11)

	 lim ,
dt

kCL
→ ( ) =

0
0 	 (12)

	 lim .
dt

kCL
→ ( ) =

0
1 	 (13)

The definition of Cognitive overload and underload situation can be depicted as the  
limit of k to the possible human cognition limit. This study assumes the possible maximum cogni-
tive workload is 1 k/s and the minimum workload is 0 k/s. Therefore, the CEE of cognitive under-
load situation is mathematically defined as in equation (12) and Cognitive overload is mathema
tically defined as in equation (13).
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3. Results and Discussion
3. 1. CEE from brain region simulation
The brain region simulation gives insight to regional activity of each brain channel of 

the chosen built in white matter track connectivity. The regional stimulus depicts neuron-firing 
phenomenon in a collective manner at regional level. Visually, the right-hemisphere visualiza-
tion in Fig. 1, a, b shows the difference between inactive and active brain regions. The active 
regions with excitatory neuronal population shows brighter color image (Fig. 1, b). Meanwhile, 
the inhibitory regions have indifferent color image. The color represents the NAP of each brain 
region or channel.

Fig. 1. The brain regional simulation results:  
a − brain regions before activation; b − brain regions during activation; c − time series data 

shows random initialization of NAP at initial stage of the simulation;  
d − time series NAP during activation

Alongside the visual representation of the regional neuron firing activity, the brain simula-
tion also outputs time series version of the NAP. The time series data plot the activity of all 76 chan-
nels from the chosen connectivity as seen during the random initialization phase in Fig. 1, c. Ran-
dom initialization is a neuron firing activity at the beginning of the simulation with duration of 
200 ms and uncontrollable by TVB users. Proceed from 200 ms duration, all channels are inactive. 
The designed regional stimulus start at a duration of 1000 ms repeatedly until the simulation is 
over at a duration of 6000 ms. As shown in Fig. 1, d, the time series NAP plot area above 0 mV 
indicates the activated region due to the stimulation. The plot area under 0mV indicates the inhi
bitory regions, which keep inactive. Accordingly, the simulation correctly represents the designed 
regional stimulus.
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Fig. 2. Utilization of brain simulation results:  
a − excitatory vs. inhibitory region NAP; b − total CEE of the tasks; c − CEE during activation

The CEE derived from the NAP and IMC state vectors as the output of the brain region si
mulation. The CTL as the average NAP due to cognitive task load (7) is consists of excitatory and 
inhibitory NAP with the example patterns as shown in Fig. 2, a. Since most regions in the con-
nectivity are excitatory, the CEE calculation using (8) give a positive result as shown in Fig. 2, b. 
During the stimulation, the CEE is constantly from 0 mJ to 10 mJ as depicted in Fig. 2, c. Hence, 
the predominant neuronal population response to the stimulus has more significant role to deter-
mine the CEE than the NAP value.

3. 2. Cognitive workload analysis
The comparison of cognitive workloads indicates the effect of certain cognitive load ex

posure. The OTDR data shows non-uniform pattern, which reveals that a train driver physical and 
cognitive task load is not exactly predictable. The task unpredictability of a train driver is due to 
the situation dynamics. Continuous perception to train control parameters and rail-traffic signs 
enforce a train driver to react according to the given situation. Meanwhile, the simulation data rep-
resents perception to the constant situation as in Fig. 3, a which gives the flat line plot in Fig. 3, b. 
Regional task in Fig. 3, a is the task in each of 76 brain region channel. The half and doubled load 
were also created based on simulation load, which share same characteristic with different values.  
The overload and underload situation were randomly generated. The overload plot position on top 
of the doubled load indicates its CEE is more than twice the normal CEE. Frequent performance 
of high energy task is more likely to induce fatigue [1]. As oppose, the underload situation only 
require less than half normal CEE which also means a train driver has to perform easy task repe
titively. Repetition of simple tasks in a long period causes boredom and prone to increase stress [2]. 
Boredom reduces the attention which also lower the alertness [3]. Therefore, the cognitive under-
load situation is simultaneously increases stress and reduces ride safety at some certain periods.
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Fig. 3. Cognitive workload comparison:  
a − cognitive workload of each brain region; b − comparison of train driver’s  

cognitive workloads

The involvement of cognitive load to train driving work design is critical to improve train 
ride safety. Balancing cognitive load by taking the subjective and objective workload into the ac-
count is required. The subjective workload measures the level of overwhelms a person acquires by 
performing certain tasks [4]. The subjective workload takes the emotional factor into the account. 
Techniques such as National aeronautics and space Administration task load index (NASA-TLX) 
includes the performance level and frustration level evaluation which dependent to the current si
tuation of a respondent. Therefore, a bias may present on the subjective workload evaluation results. 

The combination of objective workload detection with subjective workload is an available 
solution to overcome bias in workload evaluation. This study makes use of CEE approximation as 
an approach to predict physiological cognitive workload which represents the objective workload 
of a train driver. Many sophisticate measurement technique that can be applied in real-time mental 
workload detection. However, most of those techniques are intrusive because the need of an ad-
ditional equipment that restricts human movement. For example, the placement of EEG sensor on  
a train driver forehead hinders his/her ability to look outside the window when needed. Therefore, 
the work effectiveness of a person has to be sacrificed to use more sophisticate technology. Hence, 
the advancement in workload analysis technology does not reflect the correct principle of ergo-
nomics. Despite the advancement in medical sensor technology, the objective cognitive workload 
measurement is still challenging due to the some physical factor that tied to the emotional factors. 
The example of it is the reduction in muscle strength when a person sad which indicates the infor-
mation processing in mind determines the musculoskeletal work performance [26]. Therefore, this 
study provides non-intrusive cognitive workload analysis through OTDR data and also provides 
detail CEE approximation technique to prevent physical fatigue of a train driver.

3. 3. Framework evaluation
The results of the study are utilized as the basis to construct a DRE to manage train drivers’ 

mental and physical condition. Prior to the construction, the viability of the OTDR and simulation 
data to predict the mood and the readiness of a person has to be tested. Hence, the questionnaire 
based train simulation test was performed. The participant with different level of background and 
experience level feels different level of boredom and overwhelms during the test. More participants 
with some experiences in playing train simulator feeling bored in the middle of the journey. Mean-
while, new train simulator players are more excited to play the simulator itself instead of focus 
on the route condition that affects the challenge level of the journey. The perception of novel task 
such as train simulator for the new players is more rewarding [5]. However, all of the participants 
pick the station stops and the embarkation as the most challenging task. The average cognitive 
load during that phases also the highest throughout the entire journey. Most of the participant also 
chooses to take one day rest if they have to repeat the same train driving task.

  
a b
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The duty readiness evaluation systems that embedded in the CWM is a human-to-human 
evaluation. The human-to-human evaluation performed by using the control chart that built based 
on the average cognitive load. Fig. 4, a shows a control chart for daily routine duty readiness.  
The subgroups in this control chart are the responses of participant willingness to perform 8 hours 
a day (40 hours/ week) daily train driving operation. The participants with average cognitive load 
in between 0.2 to 0.4 are mainly in subgroup 2, which are the participants than need more than one 
day break period. Subgroup 1 that represents the participants that need one day for break each week 
are having average cognitive load of 0.0 to 0.2 and 0.4 to 0.6. The participants in subgroup 3 that 
only willing to perform train driving operation in 4 hours/day are having average cognitive load 
under 0.2 and 0.8. Therefore, the average cognitive load of participants in subgroup 3 represents 
the cognitive underload and overload situation. Subgroup 2 represents the below average cognitive 
load and subgroup 1 for the average or normal cognitive load. The result indicates the participants 
with normal cognitive load require a single day break each week. The participants that experien
ces low cognitive load require more than one day break while participants with the underload and 
overload situation demands less train driving hour which is 4 hours/day.

Fig. 4. Control charts for readiness evaluation:  
a – routine or daily duty readiness; b – ongoing duty readiness

The ongoing duty evaluation also performed using the same control limit based on the ave
rage cognitive load. The ongoing duty readiness is the willingness of the participant to continue 
current train driving operation. Fig. 4, b shows the same control limits applied to different sub-
groups. The subgroups represent the participant responses of readiness to start another journey. 
Subgroup 0 represents «yes» answer, subgroup 1 represents «after some break» answer, and sub-
group 2 represents «no» answer. The average cognitive load values that fall into subgroup 0 are 
cognitive underload value from 0.0 to 0.2. Subgroup 2 only consists of underload values under 0.2 
and subgroup 1 represents normal and cognitive overload values. Hence, the interpretation of the 
ongoing duty readiness evaluation is the participants with normal workload and high workload 
both need break and rest period during duty. 

The average cognitive load defines different expected treatments for the train drivers based 
on their workload experience throughout the journey. Therefore, the division of each treatment 
according to the provided subgroups helps the management to fit the needs of the train drivers to 
refresh their mental state. Defining weekly rest period and short daily rest period as expected by the 
train driver will maintain each train driver normal performance. As a result, the train driver always 
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chooses the best driving strategy, which is the safest, and the most effective strategy. Also, the 
probability of human error is reduced in a good mental condition [6]. Therefore, the train parame-
ter control according to the rail-traffic sign and situational perception are ensured mostly correct 
or under the specified threshold. Cognitive load value as an indicator of CEE also represents the 
energy level of a train driver that can be linked to the physical fatigue. Thus, the human-to-human 
CWM framework maintains train driver physical and mental condition to keep them ready in their 
best performance for each train driving duty.

3. 4. Whole design of the framework
The construction of the CWM framework is based on CEE derived average cognitive work-

load and questionnaire based subjective workload. Both results used for DRE as the main part of 
the CWM. Hence, the CWM can provide different feedback according to the given train driver 
condition. Fig. 5 shows the architecture of the CWM framework with the circles are the entities in-
volved, the squares are the data transformation flow, the ovals are the output variables of the CWM 
framework, the parallelogram is the output variable processing as the decision support, and the 
arrows are the relational process. The flow starts from the train driver operating the train, which 
outputs OTDR data. The OTDR data copied to the management and then processed further to 
obtain cognitive load value. The average cognitive load value then calculated which outputs CEE. 
The average cognitive load is used as in readiness evaluation to support management decision in 
treating each train driver based on their workload. The conditional control through the application 
of control chart provides the suggested decision for the management. Hence, the management can 
determine daily short rest period and weekly rest period, which affect the train driver scheduling.

Fig. 5. The CWM framework architecture

The CWM framework provided as an alternative technique that can be quickly implemented 
among other train driver CEE tracking and DRE. The tradeoff of the CWM framework with more 
sophisticated techniques is provided in Table 2. The CWM framework does not provide real-time 
CEE measurement that restricts the movements of a train driver. The CWM framework imple-
mentation also does not require locomotive or train control technology upgrade. The output of 
CWM framework is comparable with a sophisticated ensemble learning method developed by [16]. 
Different from the computational based evaluation technique using expert system as developed  
by [27–29] and using support vector machine (SVM) by [30], this study apply human-to-human 
evaluation which involve emotional factor of a person. The CEE approximation method that pro-
posed in this study also constructed based on simulation data. As a result, the noise that may occur 
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in the real world is not taken into the account by the model. However, it is clear that the CWM 
framework can be an alternative technique or a backup technique for the sophisticated technique 
that rely on computational method.

Table 2
Comparison of CWM framework with real-time evaluation techniques

Study Evaluation 
Technique Output Device CEE Approximation Intrusive Movement 

Restriction
Technology 

Upgrade
This 
study Control Chart Decision 

Support OTDR 76 Brain Region 
Simulation × × Not needed

[16] Ensemble Learn-
ing

Decision 
Support EEG Frontal EEG × ü Needed

[29] Expert System Fatigue  
Potential EEG Frontal & Temporal 

EEG ü ü Needed

[30] Support Vector 
Machine

Vigilance 
level EEG 8-channel EEG × ü Needed

The CWM framework that has been developed in this study has some limitations and room 
for improvements to increase the effectiveness of the model in the future. The CEE tracking in 
CWM framework was built upon neurodynamics simulation principle. As a consequence, the em-
pirical factor is not present in the model. Therefore, further analysis in the CEE approximation 
technique is required to include the empirical factor. The use of OTDR data also require data 
extraction process after every journey which tedious for the management. Therefore, the deve
lopment of a technique or a device to safely capture OTDR data in real-time should be considered 
in the future. The use of machine learning based classification technique such as artificial neural 
network (ANN) or SVM to classify the subgroups in the control chart is also required to improve 
the management efficiency and reduce the emotional decision making that may present in hu-
man-to-human evaluation. 

4. Conclusions
The main result of this study is the cognitive workload management framework for driver 

readiness evaluation to provide correct treatment for each train driver according to their workload. 
The framework has a dual function as a physical fatigue and stress prevention system. Both phys-
ical and stress prevention correlates to the driving strategy decision making and driving perfor-
mance of a train driver. This study also outputs the cognitive energy expenditure approximation 
technique that tested with brain region simulation as the physical cognitive workload estimator. 
The framework application is human-to-human using the control chart to groups each train driver 
average cognitive load to the demanded treatment during ongoing train driving duty and routine 
daily train driving operation. Each subgroup represents the required break duration for each par-
ticipant with 0.0 to 0.2 one day break each week and 0.4 to 0.6 cognitive load requires shorter 
regular break. The participants in subgroup 3 that only willing to perform train driving operation 
in 4 hours/day are having average cognitive load under 0.2 and 0.8. The participants in subgroup 3 
that only willing to perform train driving operation in 4 hours/day are having average cognitive load 
under 0.2 and 0.8. The average cognitive load from the OTDR data determines the corresponding 
train driver subgroup in the control chart. Therefore, each train driver recovery time and recovery 
technique can be determined objectively. Thus, the cognitive energy expenditure derived average 
cognitive load value is useful to provide decision support for the railway human factor management 
to treat each train driver in different way.
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