• Ibrahim Abulfaz Gabibov SRI "Geotechnological problems of oil, gas and chemistry"
  • Rabiya Seydulla Nadjafkulieva Azerbaijan State Oil and Industry University
  • Sevinj Malik Abasova Azerbaijan State Oil and Industry University
Keywords: gas engine compressors, compressor station, heat exchanger, refrigerator, working agent, seawater, compressed and heated gas


Currently, the main volume of associated petroleum gas production in Azerbaijan is carried out at offshore fields. About 30 % of this volume is used for SOCAR’s own technological needs of the oil company (to maintain the level of oil production). And the rest are transported to onshore facilities and further for processing to a gas processing plant. Subsequently, dry and purified gas is sent through a gas pipeline system for use by the population, or to a network of trunk pipelines for further export. When gas is transferred to the gas lift system and ashore, it is compressed in compressors, as a result of which the temperature of the working agent rises. The latter dramatically reduces the level of operational safety of the entire process. Based on the foregoing, ensuring the required gas quality at the outlet of the compressor unit is an important and urgent task.

Currently used in the gas cooling system, shell-and-tube type refrigeration units have several advantages: high heat transfer coefficient, operability in low and high pressure modes, simplicity of design and service. Along with this, these units are distinguished by large dimensions and high metal consumption, noise effect, vibration, etc.

A new design of a heat exchanger for cooling associated petroleum gas at the outlet of gas motor compressors is proposed.

Based on the modeling of the heat transfer process, mathematical models have been obtained that make it possible to adequately evaluate the cooling process in the proposed refrigeration device.


Download data is not yet available.

Author Biographies

Ibrahim Abulfaz Gabibov, SRI "Geotechnological problems of oil, gas and chemistry"

Doctor of Technical Sciences, Professor

Rabiya Seydulla Nadjafkulieva, Azerbaijan State Oil and Industry University

Department of "Engineering and computer graphics"

Sevinj Malik Abasova, Azerbaijan State Oil and Industry University

Department of "Engineering and computer graphics"


Asadov, O. S., Aliev, V. I., Makarov, V. V. (2011). Noviy nauchniy podhod k opredeleniyu real'noy proizvoditel'nosti porshnevyh kompressorov v sistemah gazlifta i transporta gaza. Moscow: «Sputnik +», 386.

Krets, V. G., Rudachenko, A. V., Shmurygin, V. A. (2016). Mashiny i oborudovanie gazonefteprovodov. Sankt-Peterburg: Lan', 376.

Kantyukov, R. A. (2014). Kompressory v tehnologicheskih protsessah: gazoraspredelitel'nye, kompressornye stantsii magistral'nyh gazoprovodov i avtomobil'nye gazonakopitel'nye kompressornye stantsii. Kazan': Kazan. nats. issled. tehnolog. un-t, 645.

Ong, C. W., Chen, C.-L. (2019). Technical and economic evaluation of seawater freezing desalination using liquefied natural gas. Energy, 181, 429–439. doi:

Mazyan, W., Ahmadi, A., Ahmed, H., Hoorfar, M. (2016). Market and technology assessment of natural gas processing: A review. Journal of Natural Gas Science and Engineering, 30, 487–514. doi:

Bahadori, A. (2014). Liquefied Natural Gas (LNG). Natural Gas Processing, 591–632. doi:

Bulygin, Yu. A., Baranov, S. S. (2015). Teploobmennye apparaty v neftegazovoy promyshlennosti: kursovoe proektirovanie. Voronezh: FGBOU VPO «Voronezhskiy gosudarstvennyy tehnicheskiy universitet», 100.

Jacobs, G. G., Liebenberg, L. (2016). The influence of timed coolant injection on compressor efficiency. Sustainable Energy Technologies and Assessments, 18, 175–189. doi:

Hou, M., Wu, Z., Hu, J., Zhang, L., Luo, E. (2019). Experimental study on a thermoacoustic combined cooling and power technology for natural gas liquefaction. Energy Procedia, 158, 2284–2289. doi:

Energy and Exergy Analyses of Natural Gas Liquefaction Cycles (2014). Handbook of Liquefied Natural Gas, 185–228. doi:

Guo, B., Liu, X., Tan, X. (2017). Gas Lift. Petroleum Production Engineering, 549–601. doi:

👁 544
⬇ 347
How to Cite
Gabibov, I. A., Nadjafkulieva, R. S., & Abasova, S. M. (2019). MODELING THE HEAT TRANSFER PROCESS IN REFRIGERATION UNITS USED IN THE OIL INDUSTRY. EUREKA: Physics and Engineering, (6), 57-62.