CYCLOIDAL GAIT WITH DOUBLE SUPPORT PHASE FOR THE NAO HUMANOID ROBOT
Abstract
The commercial Nao humanoid robot has 11 DOF in legs. Even if these legs include 12 revolute joints, only 11 actuators are employed to control the walking of the robot. Under such conditions, the mobility of the pelvis and that of the oscillating foot are mutually constrained at each step. Besides, the original gait provided by the manufacturer company of the Nao employs only single support phases during the walking. Because of both issues, the reduced mobility in legs and the use of only single support phases, the stability of the walking is affected. To contribute to improving such stability, in this paper an approach is proposed that incorporates a double support phase and a gait based on cycloidal time functions for motions of the pelvis and those of the oscillating foot. To assess the stability of the walking an index is applied, which is based on the notion of zero-moment point (ZMP) of the static foot at each step. Results of experimental tests show that the proposed gait enhances the stability of the robot during the walking.
Downloads
References
Honda. Asimo the world’s most advanced humanoid robot. Available at: http://asimo.honda.com/asimo-specs/
Zhou, C., Li, Z., Wang, X., Tsagarakis, N., Caldwell, D. (2015). Stabilization of bipedal walking based on compliance control. Autonomous Robots, 40(6), 1041–1057. doi: https://doi.org/10.1007/s10514-015-9507-3
Radford, N. A., Strawser, P., Hambuchen, K., Mehling, J. S., Verdeyen, W. K., Donnan, A. S. et. al. (2015). Valkyrie: NASA's First Bipedal Humanoid Robot. Journal of Field Robotics, 32 (3), 397–419. doi: https://doi.org/10.1002/rob.21560
Kaneko, K., Kaminaga, H., Sakaguchi, T., Kajita, S., Morisawa, M., Kumagai, I., Kanehiro, F. (2019). Humanoid Robot HRP-5P: An Electrically Actuated Humanoid Robot With High-Power and Wide-Range Joints. IEEE Robotics and Automation Letters, 4 (2), 1431–1438. doi: https://doi.org/10.1109/lra.2019.2896465
Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc, V. G. et. al. (2017). WALK-MAN: A High-Performance Humanoid Platform for Realistic Environments. Journal of Field Robotics, 34 (7), 1225–1259. doi: https://doi.org/10.1002/rob.21702
Sugihara, T., Nakamura, Y. (2005). A Fast Online Gait Planning with Boundary Condition Relaxation for Humanoid Robots. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. doi: https://doi.org/10.1109/robot.2005.1570136
De Magistris, G., Pajon, A., Miossec, S., Kheddar, A. (2017). Optimized humanoid walking with soft soles. Robotics and Autonomous Systems, 95, 52–63. doi: https://doi.org/10.1016/j.robot.2017.05.006
Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P. et. al. (2008). The NAO humanoid: a combination of performance and affordability. arXiv e-Journal, Cornell University. Available at: https://arxiv.org/pdf/0807.3223v1.pdf
Kajita, S., Hirukawa, H., Harada, K., Yokoi, K. (2014). Introduction to Humanoid Robotics. Springer Tracts in Advanced Robotics. doi: https://doi.org/10.1007/978-3-642-54536-8
Fierro, J. E., Alfonso Pamanes, J., Moreno, H. A., Nunez, V. (2017). On the Constrained Walking of the NAO Humanoid Robot. Lecture Notes in Networks and Systems, 13–29. doi: https://doi.org/10.1007/978-3-319-54377-2_2
Liu, J., Urbann, O. (2016). Bipedal walking with dynamic balance that involves three-dimensional upper body motion. Robotics and Autonomous Systems, 77, 39–54. doi: https://doi.org/10.1016/j.robot.2015.12.002
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). doi: https://doi.org/10.1109/robot.2003.1241826
Pot, E., Monceaux, J., Gelin, R., Maisonnier, B. (2009). Choregraphe: a graphical tool for humanoid robot programming. RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication. doi: https://doi.org/10.1109/roman.2009.5326209
Webots: Open Source Robot Simulator. Available at: https://cyberbotics.com/
Arias, L., Olvera, L., Pamanes, J. A., Nunez, J. V. (2014). 3D Walking cycloidal pattern for humanoids and its application to the Bioloid robot. Iberoamerican Journal of Mechanical Engineering, 18 (1), 03–22.
Dombre, E., Khalil, W. (Eds.) (2007). Modeling, Performance Analysis and Control of Robot Manipulators. John Wiley & Sons. doi: https://doi.org/10.1002/9780470612286
Fierro, J. E., Pamanes, J. A., Arias, L. E. (2015). Walking of the humanoid robot Nao based on cycloidal motions. Proceedings of XXI International Annual Congress of the SOMIM, Mexican Society of Mechanical Engineering.
Vukobratović, M., Borovac, B., Surla, D., Stokić, D. (1990). Biped Locomotion. Springer. doi: https://doi.org/10.1007/978-3-642-83006-8
Ren, L., Jones, R. K., Howard, D. (2007). Predictive modelling of human walking over a complete gait cycle. Journal of Biomechanics, 40 (7), 1567–1574. doi: https://doi.org/10.1016/j.jbiomech.2006.07.017
Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H. (2001). The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180). doi: https://doi.org/10.1109/iros.2001.973365
Copyright (c) 2019 Jesus E. Fierro P., J. Alfonso Pamanes G., Victor De-Leon-Gomez

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.