IMPROVEMENT OF PROJECT RISK ASSESSMENT METHODS OF IMPLEMENTATION OF AUTOMATED INFORMATION COMPONENTS OF NON-COMMERCIAL ORGANIZATIONAL AND TECHNICAL SYSTEMS

Keywords: organizational and technical system, implementation project, risk management, fuzzy logical conclusion

Abstract

The results of a study using the methodological apparatus of the theory of fuzzy logic and automation tools for analyzing input data for risk assessment of projects for the implementation of automated information components of organizational and technical systems are presented. Based on the model of logistics projects for motor transport units, the method for assessing the risks of projects implementing automated information components of non-commercial organizational and technical systems has been improved. To do this, let’s analyze the peculiarities of implementing ERP projects as commercial ones and investigate the specifics of the activities of state institutions, when successful tasks, and not economic indicators, lay the foundation for the assessment. It is considered that it is possible to formulate a system of risk assessment indicators for reducing the effectiveness of projects for implementing automated information systems in non-commercial organizational and technical systems. A meaningful interpretation of the fuzzy approach is carried out regarding the formalization of the risk assessment process for projects of automated information systems of public institutions. A tree of fuzzy inference is constructed based on the results of a study of the description of indicators and expert assessments on the risk assessment of the implementation of the project of such an automated information system.

The improved method differs from the known ones by the use of hierarchical fuzzy inference, which makes it possible to quantify, reduce the time to evaluate project risks and improve the quality of decisions. An increase in the number of input variables leads to an increase in complexity (an increase in the number of rules) for constructing a fuzzy inference system. The construction of a hierarchical system of fuzzy inference and knowledge bases can reduce complexity (the number of rules). The development of a software module based on the algorithm of the method as part of corporate automated information systems of non-commercial organizational and technical systems will reduce the time for risk assessment of projects for the implementation of automated information systems.

Downloads

Download data is not yet available.

Author Biographies

Аlexander Androshchuk, National Academy of the State Border Guard Service of Ukraine named after Bohdan Khmelnytskyi

Educational and Scientific Institute of Management Training

Serhii Yevseiev, Simon Kuznets Kharkiv National University of Economics

Department of Cyber Security and Information Technology

Victor Melenchuk, Military Academy (Odessa)

Department of repair and operation of automotive and special equipment

Olga Lemeshko, National Academy of the State Border Guard Service of Ukraine named after Bohdan Khmelnytskyi

Department of English

Vladimir Lemeshko, National Academy of the State Border Guard Service of Ukraine named after Bohdan Khmelnytskyi

Department of Border Guard Tactics

References

A Guide to the Project Management Body of Knowledge (PMBOK® Guide) (2017). Project Management Institute, 760.

Chimshir, V. (2013). Matters of projects classification and ranking by applicable technical systems. Eastern-European Journal of Enterprise Technologies, 5 (2 (65)), 44–48. Available at: http://journals.uran.ua/eejet/article/view/18441/16180

Altwies, D., White, D. (2018). Achieve PMP Exam Success: A Concise Study Guide for the Busy Project Manager. J. Ross Publishing, 526.

Microsoft Solutions Framework. Distsiplina upravleniya riskami MSF ver. 1.1. Available at: https://www.microsoft.com/ru-ru

DeMarko, T., Lister, T. (2005). Val'siruya s medvedyami: upravlenie riskami v proektah po razrabotke programmnogo obespecheniya. р.m Office, 190.

Ageev, A. E. (2006). Modelirovanie organizatsionnyh struktur i protsessov upravleniya riskami proekta. Otkrytye informatsionnye i komp'yuternye integrirovannye tehnologii, 32, 110–113.

Bedriy, D. I., Polshakov, V. I. (2012). Research projects budgeting with an allowance for risks. Eastern-European Journal of Enterprise Technologies, 1 (12 (55)), 47–49. Available at: http://journals.uran.ua/eejet/article/view/3626/3399

Danchenko, O. B. (2014). Ohliad suchasnykh metodolohiy upravlinnia ryzykamy v proektakh. Upravlinnia proektamy ta rozvytok vyrobnytstva, 1, 16–25.

Latkin, M. A. (2008). Informatsionnaya model' upravleniya riskami proektov predpriyatiya. Otkrytye informatsionnye i komp'yuternye integrirovannye tehnologii, 39, 210–214.

Fillips, D. (2006). Upravlenie proektami v oblasti informatsionnyh tehnologiy. Moscow: Lori, 374.

Bushuev, S. D., Yaroshenko, N. P., Yaroshenko, Yu. F. (2013). Upravlenie proektami i programmami razvitiya organizatsiy na osnove predprinimatel'skoy energii. Upravlenie proektami i programmami, 4, 300–311.

Head, G. L., Horn, I. I. (1994). Essentials of Risk Management. Insurance Institute of America, 230.

Меlenchuk, V. М. (2016). Model of Risk Assessment in Transport Logistic Projects / Programs / Portfolios Using Fuzzy Inference. Visnyk Lvivskoho derzhavnoho universytetu bezpeky zhyttiediyalnosti, 13, 48–55.

Pleskach, V. L., Zatonatska, T. H. (2011). Informatsiyni systemy i tekhnolohiyi na pidpryiemstvakh. Kyiv: Znannia, 718.

Ganesh, K., Mohapatra, S., Anbuudayasankar, S. P., Sivakumar, P. (2014). Enterprise Resource Planning: Fundamentals of Design and Implementation. Springer, 170. doi: https://doi.org/10.1007/978-3-319-05927-3

Rybydailo, A. A., Poryvai, O. V., Levshenko, O. S. et. al. (2015). Analiz zarubizhnoho ta vitchyznianoho dosvidu upravlinnia proektamy z vprovadzhennia informatsiynykh tekhnolohiy. Zbirnyk naukovykh prats Tsentru voienno-stratehichnykh doslidzhen Natsionalnoho universytetu oborony Ukrainy imeni Ivana Cherniakhovskoho, 1 (53), 55–64.

Davis, W. S., Yen, D. C. (1998). The Information System Consultant’s Handbook: Systems Analysis and Design. CRCPress, 800.

Leonenkov, A. V. (2005). Nechetkoe modelirovanie v srede MatLab i FuzzyTECH. Sankt-Peterburg: BHV-Peterburg, 736.

Shtovba, S. D. (2007). Proektirovanie nechetkih sistem sredstvami MatLab. Moscow: Goryachaya liniya-Telekom, 288.

Cao, B.-Y. et. al. (Eds.) (2014). Fuzzy Systems & Operations Research and Management. Springer, 402.

Androshchuk, O. S., Mykhailenko, O. V. (2014). Model vyiavlennia porushnykiv zakonodavstva na derzhavnomu kordoni iz zastosuvanniam ierarkhichnoho nechitkoho lohichnoho vyvodu. Suchasni informatsiyni tekhnolohiyi u sferi bezpeky ta oborony, 1, 5–10.

Lemeshko, V. (2016). The usage of border units for specific tasks: retrospective analysis and development prospects. Zbirnyk naukovykh prats Natsionalnoi akademiyi Derzhavnoi prykordonnoi sluzhby Ukrainy. Seriya: viyskovi ta tekhnichni nauky, 4 (70), 101–117.

Lemeshko, O. V., Yankovets, A. V., Bets, I. O., Isaieva, I. F. (2019). Peculiarities of the English Language Training of Military Administration Masters. Revista Romaneasca Pentru Educatie Multidimensionala, 11 (2), 160. doi: https://doi.org/10.18662/rrem/123


👁 518
⬇ 368
Published
2020-01-30
How to Cite
AndroshchukА., Yevseiev, S., Melenchuk, V., Lemeshko, O., & Lemeshko, V. (2020). IMPROVEMENT OF PROJECT RISK ASSESSMENT METHODS OF IMPLEMENTATION OF AUTOMATED INFORMATION COMPONENTS OF NON-COMMERCIAL ORGANIZATIONAL AND TECHNICAL SYSTEMS. EUREKA: Physics and Engineering, (1), 48-55. https://doi.org/10.21303/2461-4262.2020.001131
Section
Computer Science