Keywords: artificial neural network, intellectual system, fuzzy sets, personalization of education, fuzzy logic


Various methods are currently being used in examining the initial “START” knowledge of applicants and their placement for specialties. Studies show that applicants are placed on the decreasing principle in terms of their overall scores at universities. In this case, applicants with a high level of knowledge are placed in the prestigious specialties as medicine and law as they require high results. Though, while applying for other professions, the applicants do not perform enough results on the key disciplines for the profession, they are placed in those professions when the general results enable it. This causes them to face a number of problems while working both in education process and in the industry.

To avoid this problem and to place applicants in a specialty that is more relevant to their level of knowledge, the introduction of an individual approach to the evaluation of initial level of knowledge may be more promising.

This article presents a modeling of the "evaluation – placement" support system for the individual approach to assessing applicants' knowledge and positioning them in relevant specialties. The main goal of the system is to give each applicant the opportunity to choose and study the specialty that is more relevant to their knowledge and skills, as well as to analyze the results for each discipline along with the overall results. The system is implemented using fuzzy logic based artificial neural networks.

The network consists of 100 neurons in the input layer, two hidden layers and one output layer. The number of neurons at the output is the same as the number of specialties taught at university.


Download data is not yet available.


Varghese, N. V. (2013). Globalization and higher education: Changing trends in cross border education. Analytical reports in international education, 5 (1), 7–20.

Reber, R., Canning, E. A., Harackiewicz, J. M. (2018). Personalized Education to Increase Interest. Current Directions in Psychological Science, 27 (6), 449–454. doi:

Mammadova, M., Gasimov, H. (2017). E-UNIVERSITY: CONCEPTUAL, TECHNOLOGICAL AND ARCHITECTURAL APPROACHES. Problems of Information Technology, 8 (2), 51–62. doi:

Özcan, B., Güler, E., Yerlikaya, Z. (2017). Kocaeli Mühendislik Fakültesi Mezunlarının Akademik Başarılarının İncelenmesi. Kocaeli Üniversitesi Sosyal Bilimler Dergisi, 34, 143–168. Available at:

Meenakshi, N., Pankaj, N. (2015). Application of Fuzzy Logic for Evaluation of Academic Performance of Students of Computer Application Course. IJRASET 2015, 3 (X).

Apatova, N. V., Gaponov, A. I., Mayorova, A. N. (2017). Forecasting students well doing based on fuzzy logic. Advanced scientific technology, 4, 7–11.

Johnson, A. (2019). 5 Ways AI Is Changing The Education Industry. ELearning Industry. Available at:

Lomakin, N. I., Plaksunova, T. A., Loginova, E. V., Lukyanov, G. I., Kozlova, E. A., Skobora, E. A. et. al. (2017). Neural network for evaluating the competence of students. EDCRUNCH Ural: new educational technology at uiversity–2017. Ekaterenburg, 307–319.

Abuzagia, K. M. (2017). International intentions in the field of information technology (Artificial intelligence systems and their importance in the fields of education). 2017 Joint International Conference on Information and Communication Technologies for Education and Training and International Conference on Computing in Arabic (ICCA-TICET). doi:

Hahm, N.-W., Hong, B.-I. (2009). A simultaneous neural network approximation with the squashing function. Honam Mathematical Journal, 31 (2), 147–156. doi:

Guzmán‐Ramírez, E., Garcia, I., García‐Juárez, M. (2019). A “learning by design” application for modeling, implementing, and evaluating hardware architectures for artificial neural networks at undergraduate level. Computer Applications in Engineering Education, 27 (5), 1236–1252. doi:

Gasimov, H. (2018). Fuzzy sets method to adhere to the student's intellectual potential to choose the path of education. DILET2018 The 2nd International Conference on Distance Learning and Innovative Educational Technologies. Ankara, 240

Mammadova, M. H., Jabrayilova, Z. (2012). Multi-criteria model of decision-making support in the personnel management problems. Problems of information technology, 2, 37–46.

Min, W. Y. (2017). Neural Network Application to Control and Prediction of Educational Process Results in the University. Economic and social-humanitarian research, 4, 130–132.

Arora, N., Saini, J. R. (2014). Predicting student academic performance using fuzzy artmap network. International Journal of Advances in Engineering Science and Technology, 3 (3), 187–192.

Drachsler, H., Kirschner, P. A. (2012). Learner Characteristics. Encyclopedia of the Sciences of Learning, 1743–1745. doi:

Qasımov, H. (2018). Yapay sinir ağları kullanarak öğrencinin bilgi düzeyine daha uygun üniversite meslek seçimine yönlendirilmesi metödünün yapılandırılması. DILET 2018 – 2. Uluslararası Uzaktan Öğrenme ve Yenilikçi Eğitim Teknolojileri Konferansı. Ankara, 239.

Lyamin, A. V. (2018). Creation of individual learning trajectories based on student’s achievements and functional state analysis. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 115 (3), 543–553. doi:

Ktona, A., Xhaja, D., Ninka, I. (2014, May). Extracting Relationships between Students' Academic Performance and Their Area of Interest Using Data Mining Techniques. 2014 Sixth International Conference on Computational Intelligence, Communication Systems and Networks, 6–11. doi:

Alsobhi, A. Y., Alyoubi, K. H. (2019). Adaptation algorithms for selecting personalised learning experience based on learning style and dyslexia type. Data Technologies and Applications, 53 (2), 189–200. doi:

Oancea, B., Dragoescu, R., Ciucu, S. (2013). Predicting students’ results in higher education using a neural network. International Conference on Applied Information and Communication Technologies (AICT2013), 190–193.

Gasymov, G. A. ogly. (2018). Development of the mechanism of intellectual management of “student-lecturer” relations in the space of virtual education with the use of neural networks. Open Education, 22 (5), 94–103. doi:

Matúšová, M., Hrušková, E. (2019). Applying the Computer Aided Systems in Education Process. Management Systems in Production Engineering, 27 (1), 46–50. doi:

Kotova, E. E. (2017). Intellectual data analysis in the educational process. 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), 757–759. doi:

Aydoğan, İ., Zirhlioğlu, G. (2018). Öğrenci Başarılarının Yapay Sinir Ağları ile Kestirilmesi. Yuzunci Yil Universitesi Egitim Fakultesi Dergisi, 15 (1), 577–610. doi:

Domenech, D., Sherman, M., Brown, J. L. (2016). Personalizing 21st century education: A framework for student success. John Wiley & Sons, 144.

Ray, S., Saeed, M. (2018). Applications of Educational Data Mining and Learning Analytics Tools in Handling Big Data in Higher Education. Applications of Big Data Analytics. Cham: Springer, 135–160. doi:

Jyothi, G., Parvathi, C., Srinivas, P., Althaf, S. (2014). Fuzzy expert model for evaluation of faculty performance in Technical educational Institutions. International Journal of Engineering Research and Applications, 4 (5), 41–50.

State Examination Centre of the Republic of Azerbaijan (2014–2017). Available at:

Mammadovа, M. (2019). Methods for fuzzy demand assessment for it specialties. EUREKA: Physics and Engineering, 4, 23–33. doi:

Mammadova, M. H., Jabrayilova, Z. G., Mammadzada, F. R. (2015). Managing the IT labor market in conditions of fuzzy information. Automatic Control and Computer Sciences, 49 (2), 88–93. doi:

Grosan, C., Abraham, A. (2011) Artificial Neural Networks. Intelligent Systems Reference Library. Berlin, Heidelberg: Springer, 281–323. doi:

👁 635
⬇ 306
How to Cite
Computer Science