SYNTHESIS AND PROPERTIES OF METAL-COMPLEX CATALYSTS BASED ON OIL METALLOPORPHYRINS

Keywords: oil metalloporphyrins; bifunctional extractants; asphaltenes; dioxide adducts; alkenes epoxidation

Abstract

The study of the properties and use of natural metalloporphyrins in the development of new highly selective methods for the oxygenation of hydrocarbons at moderate temperatures is an urgent problem. The present work is devoted to the extraction of metalloporphyrins from oil residues and the creation on their basis of effective catalytic systems for the oxidation of alkenes. The separation of metalloporphyrins from oil residues was carried out using new bifunctional organic extractants having the nature of keto-alcohols and providing a greater degree of extraction of porphyrins in comparison with the known traditionally used extractants.

The results of a study of a number of new bifunctional organic reagents as extractants for the selective extraction of oil porphyrins from asphaltenes are presented, their spectral characteristics are studied, the dependence of the degree of extraction on the mass ratio of the extractant and the crude oil is revealed. The best results were obtained with a mass ratio of 1:30. The isolated mixture of metalloporphyrins is first subjected to demetallization with hydrochloric acid (pH=1–2), turning into a mixture of porphyrins, then, to obtain individual metal porphyrin complexes, the required transition metal ions are introduced into the porphyrin ring by treating the mixture with these metal salts. It was shown that the yield of synthesized oil porphyrins is 42–85 %, depending on the nature of the metal. The composition and structure of the synthesized oil metalloporphyrins containing iron, cobalt, nickel, manganese are established by modern methods of physico-chemical analysis. The catalytic properties of synthesized metalloporphyrins in the epoxidation of unsaturated alkenes have been investigated. Their dioxide adducts were obtained, and a mechanism was proposed for the oxidation of alkenes with the formation of oxinoid structures as a result of the decomposition of the oxygen complexes of metal porphyrins

Downloads

Download data is not yet available.

Author Biography

Minira Aghahuseynova, Azerbaijan State Oil and Industry University

Department of Chemistry and Technology of Inorganic Substances

References

Len, Zh. M. (1998). Supramolekulyarnaya himiya: Kontseptsii i perspektivy. Novosibirsk: Nauka, 334.

Groves, K., Lee, J. (2000). The porphyrin handbook. Vol. 4. Academic Press, 17–39.

Suslick, K. S. (2000). The porphyrin handbook. Vol. 4. Academic Press, 41–63.

Marchon, J.-C., Ramasseul, R. (2003). Chiral Metalloporphyrins and Their Use in Enantiocontrol. The Porphyrin Handbook, 75–132. doi: https://doi.org/10.1016/b978-0-08-092385-7.50009-4

Sheldon, R. A. (Ed.) (1994). Metalloporphyrins in catalytiс oxidation. Marcel Dekker Inc, 390.

Barona-Castaño, J., Carmona-Vargas, C., Brocksom, T., de Oliveira, K. (2016). Porphyrins as Catalysts in Scalable Organic Reactions. Molecules, 21 (3), 310. doi: https://doi.org/10.3390/molecules21030310

Lesage, S., Xu, H., Durham, L. (1993). The occurrence and roles of porphyrins in the environment: possible implications for bioremediation. Hydrological Sciences Journal, 38 (4), 343–354. doi: https://doi.org/10.1080/02626669309492679

Imran, M., Ramzan, M., Qureshi, A., Khan, M., Tariq, M. (2018). Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. Biosensors, 8 (4), 95. doi: https://doi.org/10.3390/bios8040095

Meunier, B. (1992). Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chemical Reviews, 92 (6), 1411–1456. doi: https://doi.org/10.1021/cr00014a008

Achugasim, O., Ojinnaka, C., Osuji, L. (2013). Management of petroporphyrins in a crude oil polluted environment. European Chemical Bulletin, 2 (10), 794–796. doi: http://dx.doi.org/10.17628/ecb.2013.2.794-796

García-Arellano, H., Buenrostro-Gonzalez, E., Vazquez-Duhalt, R. (2004). Biocatalytic transformation of petroporphyrins by chemical modified cytochrome C. Biotechnology and Bioengineering, 85 (7), 790–798. doi: https://doi.org/10.1002/bit.20023

Maravin, G. B., Avdeev, M. V., Bagriy, E. I. (2000). Okislitel'naya funktsionalizatsiya nasyshchennyh uglevodorodov na metallokompleksnyh katalizatorah porfirinogo ryada. Neftehimiya, 40 (1).

Miralamov, G. F. (2005). Kataliticheskaya ochistka prirodnogo gaza i uglevodorodnyh gazovyh vybrosov neftehimicheskoy promyshlennosti ot serovodoroda. Neftehimiya, 45 (5), 397–399.

Birnbaum, T., Hahn, T., Martin, C., Kortus, J., Fronk, M., Lungwitz, F. et. al. (2014). Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films. Journal of Physics: Condensed Matter, 26 (10), 104201. doi: https://doi.org/10.1088/0953-8984/26/10/104201

Freeman, D. H., O’Haver, T. C. (1990). Derivative spectrophotometry of petroporphyrins. Energy & Fuels, 4 (6), 688–694. doi: https://doi.org/10.1021/ef00024a012

Agaguseynova, M. M., Abdullaeva, G. N., Salmanova, N. I. (2010). Supramolekulyarnye metalloporfirinovye kataliticheskie sistemy dlya neftehimicheskogo sinteza. Neftepererabotka i neftehimiya, 172–175.

Serebryakov, A. O. (2012). Composition, properties and processing of oil azerbaijan caspian sea. Geologiya, geografiya i global'naya energiya, 3 (46).

Milordov, D. V. (2013). Sopostavitel'niy analiz ekstraktsionnyh metodov vydeleniya porfirinov iz asfal'tenov tyazheloy nefti. Himiya i tehnologiya topliv i masel, 3, 29–33.

Alben, J. O. (1978). Infrared Spectroscopy of Porphyrins. The Porphyrins, 323–345. doi: https://doi.org/10.1016/b978-0-12-220103-5.50014-3

Kitagawa, T., Ozaki, Y. (2005). Infrared and Raman spectra of metalloporphyrins. Metal Complexes with Tetrapyrrole Ligands I, 71–114. doi: https://doi.org/10.1007/bfb0036790

Al-Shewiki, R. K., Mende, C., Buschbeck, R., Siles, P. F., Schmidt, O. G., Rüffer, T., Lang, H. (2017). Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins. Beilstein Journal of Nanotechnology, 8, 1191–1204. doi: https://doi.org/10.3762/bjnano.8.121

Simándi, L. I. (1992). Catalytic Activation of Dioxygen by Metal Complexes. Catalysis by Metal Complexes. doi: https://doi.org/10.1007/978-94-011-2850-6

Sun, Y., Hu, X., Li, H., Jalbout, A. F. (2009). Metalloporphyrin−Dioxygen Interactions and the Effects of Neutral Axial Ligands. The Journal of Physical Chemistry C, 113 (32), 14316–14323. doi: https://doi.org/10.1021/jp901620a


Abstract views: 18
PDF Downloads: 11
Published
2020-07-24
How to Cite
Aghahuseynova, M. (2020). SYNTHESIS AND PROPERTIES OF METAL-COMPLEX CATALYSTS BASED ON OIL METALLOPORPHYRINS. EUREKA: Physics and Engineering, (4), 19-28. https://doi.org/10.21303/2461-4262.2020.001356
Section
Chemistry