Keywords: oil metalloporphyrins; bifunctional extractants; asphaltenes; dioxide adducts; alkenes epoxidation


The study of the properties and use of natural metalloporphyrins in the development of new highly selective methods for the oxygenation of hydrocarbons at moderate temperatures is an urgent problem. The present work is devoted to the extraction of metalloporphyrins from oil residues and the creation on their basis of effective catalytic systems for the oxidation of alkenes. The separation of metalloporphyrins from oil residues was carried out using new bifunctional organic extractants having the nature of keto-alcohols and providing a greater degree of extraction of porphyrins in comparison with the known traditionally used extractants.

The results of a study of a number of new bifunctional organic reagents as extractants for the selective extraction of oil porphyrins from asphaltenes are presented, their spectral characteristics are studied, the dependence of the degree of extraction on the mass ratio of the extractant and the crude oil is revealed. The best results were obtained with a mass ratio of 1:30. The isolated mixture of metalloporphyrins is first subjected to demetallization with hydrochloric acid (pH=1–2), turning into a mixture of porphyrins, then, to obtain individual metal porphyrin complexes, the required transition metal ions are introduced into the porphyrin ring by treating the mixture with these metal salts. It was shown that the yield of synthesized oil porphyrins is 42–85 %, depending on the nature of the metal. The composition and structure of the synthesized oil metalloporphyrins containing iron, cobalt, nickel, manganese are established by modern methods of physico-chemical analysis. The catalytic properties of synthesized metalloporphyrins in the epoxidation of unsaturated alkenes have been investigated. Their dioxide adducts were obtained, and a mechanism was proposed for the oxidation of alkenes with the formation of oxinoid structures as a result of the decomposition of the oxygen complexes of metal porphyrins


Download data is not yet available.

Author Biography

Minira Aghahuseynova, Azerbaijan State Oil and Industry University

Department of Chemistry and Technology of Inorganic Substances


Len, Zh. M. (1998). Supramolekulyarnaya himiya: Kontseptsii i perspektivy. Novosibirsk: Nauka, 334.

Groves, K., Lee, J. (2000). The porphyrin handbook. Vol. 4. Academic Press, 17–39.

Suslick, K. S. (2000). The porphyrin handbook. Vol. 4. Academic Press, 41–63.

Marchon, J.-C., Ramasseul, R. (2003). Chiral Metalloporphyrins and Their Use in Enantiocontrol. The Porphyrin Handbook, 75–132. doi:

Sheldon, R. A. (Ed.) (1994). Metalloporphyrins in catalytiс oxidation. Marcel Dekker Inc, 390.

Barona-Castaño, J., Carmona-Vargas, C., Brocksom, T., de Oliveira, K. (2016). Porphyrins as Catalysts in Scalable Organic Reactions. Molecules, 21 (3), 310. doi:

Lesage, S., Xu, H., Durham, L. (1993). The occurrence and roles of porphyrins in the environment: possible implications for bioremediation. Hydrological Sciences Journal, 38 (4), 343–354. doi:

Imran, M., Ramzan, M., Qureshi, A., Khan, M., Tariq, M. (2018). Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. Biosensors, 8 (4), 95. doi:

Meunier, B. (1992). Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chemical Reviews, 92 (6), 1411–1456. doi:

Achugasim, O., Ojinnaka, C., Osuji, L. (2013). Management of petroporphyrins in a crude oil polluted environment. European Chemical Bulletin, 2 (10), 794–796. doi:

García-Arellano, H., Buenrostro-Gonzalez, E., Vazquez-Duhalt, R. (2004). Biocatalytic transformation of petroporphyrins by chemical modified cytochrome C. Biotechnology and Bioengineering, 85 (7), 790–798. doi:

Maravin, G. B., Avdeev, M. V., Bagriy, E. I. (2000). Okislitel'naya funktsionalizatsiya nasyshchennyh uglevodorodov na metallokompleksnyh katalizatorah porfirinogo ryada. Neftehimiya, 40 (1).

Miralamov, G. F. (2005). Kataliticheskaya ochistka prirodnogo gaza i uglevodorodnyh gazovyh vybrosov neftehimicheskoy promyshlennosti ot serovodoroda. Neftehimiya, 45 (5), 397–399.

Birnbaum, T., Hahn, T., Martin, C., Kortus, J., Fronk, M., Lungwitz, F. et. al. (2014). Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films. Journal of Physics: Condensed Matter, 26 (10), 104201. doi:

Freeman, D. H., O’Haver, T. C. (1990). Derivative spectrophotometry of petroporphyrins. Energy & Fuels, 4 (6), 688–694. doi:

Agaguseynova, M. M., Abdullaeva, G. N., Salmanova, N. I. (2010). Supramolekulyarnye metalloporfirinovye kataliticheskie sistemy dlya neftehimicheskogo sinteza. Neftepererabotka i neftehimiya, 172–175.

Serebryakov, A. O. (2012). Composition, properties and processing of oil azerbaijan caspian sea. Geologiya, geografiya i global'naya energiya, 3 (46).

Milordov, D. V. (2013). Sopostavitel'niy analiz ekstraktsionnyh metodov vydeleniya porfirinov iz asfal'tenov tyazheloy nefti. Himiya i tehnologiya topliv i masel, 3, 29–33.

Alben, J. O. (1978). Infrared Spectroscopy of Porphyrins. The Porphyrins, 323–345. doi:

Kitagawa, T., Ozaki, Y. (2005). Infrared and Raman spectra of metalloporphyrins. Metal Complexes with Tetrapyrrole Ligands I, 71–114. doi:

Al-Shewiki, R. K., Mende, C., Buschbeck, R., Siles, P. F., Schmidt, O. G., Rüffer, T., Lang, H. (2017). Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins. Beilstein Journal of Nanotechnology, 8, 1191–1204. doi:

Simándi, L. I. (1992). Catalytic Activation of Dioxygen by Metal Complexes. Catalysis by Metal Complexes. doi:

Sun, Y., Hu, X., Li, H., Jalbout, A. F. (2009). Metalloporphyrin−Dioxygen Interactions and the Effects of Neutral Axial Ligands. The Journal of Physical Chemistry C, 113 (32), 14316–14323. doi:

Abstract views: 18
PDF Downloads: 11
How to Cite