NAVIGATION AND MOTION CONTROL SYSTEMS OF THE AUTONOMOUS UNDERWATER VEHICLE

Keywords: autonomous underwater vehicle; control system; inertial navigation system; Kalman filter; navigation

Abstract

Autonomous underwater vehicles (AUVs) are widely used and have proven their effectiveness in tasks such as transportation safety, area monitoring and seafloor mapping. When developing AUV’s navigation and control systems, the engineers have to ensure the required levels of accuracy and reliability for solving navigation and motion control tasks in autonomous underwater operation under restrictions on the overall dimensions and power consumption of the AUV. The main purpose of this paper is to present preliminary results of AUV navigation and motion control systems development.

The AUV’s navigation system is built around strapdown inertial navigation system (SINS) designed specifically for this AUV. When surfaced, position and angular SINS correction is performed using data from dual-antenna GNSS receiver and doppler velocity log (DVL). When underwater, SINS position and velocity correction is performed using acoustic navigation system (ANS) and DVL data.

AUV’s control system provides manual and automatic control. Manual control is carried out in real-time by operator via fiber-optic cable using a joystick. Automatic control allows AUV to move independently along a specified trajectory at a given depth and speed. The AUV also has a collision avoidance system that utilizes readings from a forward-facing acoustic rangefinder to estimate time before impact based on AUV’s analytic model. If possible collision is detected, information is transmitted to the control system so that a further appropriate action can be taken.

Computer simulation utilizing the analytic AUV model was used in order to check the performance characteristics of the designed control and navigation algorithms. After confirming the operability of the developed algorithms, preliminary tests of the AUV were carried out. During the tests, AUV’s on-board equipment and navigation system readings were recorded and compared to the readings of the reference system, which was also installed on the AUV. During the tests, the dynamic characteristics of the AUV were evaluated. AUV’s characteristics obtained during simulation and testing will be used as a reference during future development

Downloads

Download data is not yet available.

Author Biographies

Dmitry Antonov, Moscow Aviation Institute (National Research University)

Department “NIO-305”

Leonid Kolganov, Moscow Aviation Institute (National Research University)

Department “NIO-305”

Aleksey Savkin, Moscow Aviation Institute (National Research University)

Department “NIO-305”

Egor Chekhov, Moscow Aviation Institute (National Research University)

Department “NIO-305”

Maxim Ryabinkin, Moscow Aviation Institute (National Research University)

Department “NIO-305”

References

State standard GOST R 56960-2016 (2016). Unmanned underwater vehicles. Classification. Available at: http://docs.cntd.ru/document/1200136057

Caffaz, Turetta, Potter, Casalino, Munafo, Tay et. al. (2012). The enhanced Folaga: A hybrid AUV with modular payloads. Further Advances in Unmanned Marine Vehicles, 309–330. doi: https://doi.org/10.1049/pbce077e_ch14

Eichhorn, M., Ament, C., Jacobi, M., Pfuetzenreuter, T., Karimanzira, D., Bley, K. et. al. (2018). Modular AUV System with Integrated Real-Time Water Quality Analysis. Sensors, 18 (6), 1837. doi: https://doi.org/10.3390/s18061837

Zhang, M., Xu, Y., Li, B., Wang, D., Xu, W. (2014). A modular autonomous underwater vehicle for environmental sampling: System design and preliminary experimental results. OCEANS 2014 - TAIPEI. doi: https://doi.org/10.1109/oceans-taipei.2014.6964495

Allotta, B., Baines, S., Bartolini, F., Bellavia, F., Colombo, C., Conti, R. et. al. (2015). Design of a modular Autonomous Underwater Vehicle for archaeological investigations. OCEANS 2015 - Genova. doi: https://doi.org/10.1109/oceans-genova.2015.7271398

CAN Specification. Version 2.0 (1991). Robert Bosch GmbH. Available at: http://esd.cs.ucr.edu/webres/can20.pdf

Zharkov, M. V., Veremeenko, K. K., Antonov, D. A., Kuznetsov, I. M. (2018). Attitude Determination Using Ambiguous GNSS Phase Measurements and Absolute Angular Rate Measurements. Gyroscopy and Navigation, 9 (4), 277–286. doi: https://doi.org/10.1134/s2075108718040090

Antonov, D. A., Veremeenko, K. K., Zharkov, M. V., Zimin, R. Y., Kuznetsov, I. M., Pron’kin, A. N. (2016). Test complex for the onboard navigation system of an airport ground vehicle. Journal of Computer and Systems Sciences International, 55 (5), 832–841. doi: https://doi.org/10.1134/s106423071604002x

Lukomsky, Yu. A., Chugunov, V. S. (1988). Marine moving objects control systems. Leningrad: Shipbuilding.

Grumondz, V. T., Polovinkin, V. V., Yakovlev, G. A. (2012). The theory of the movement of bicentric devices: mathematical models and research methods. Moscow: University book.


Abstract views: 22
PDF Downloads: 22
Published
2020-07-24
How to Cite
Antonov, D., Kolganov, L., Savkin, A., Chekhov, E., & Ryabinkin, M. (2020). NAVIGATION AND MOTION CONTROL SYSTEMS OF THE AUTONOMOUS UNDERWATER VEHICLE. EUREKA: Physics and Engineering, (4), 38-50. https://doi.org/10.21303/2461-4262.2020.001361
Section
Engineering