DEVELOPMENT AND OPTIMIZATION OF AN ULTRA WIDEBAND MINIATURE MEDICAL ANTENNA FOR RADIOMETRIC MULTI-CHANNEL MULTI-FREQUENCY THERMAL MONITORING

  • Mikhail Sedankin State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Fundamentals of Radio Engineering Department, National Research University «Moscow Power Engineering Institute», Federal state budgetary educational institution of higher education «MIREA - Russian Technological University» http://orcid.org/0000-0001-9875-6313
  • Vitaly Leushin Federal state budgetary educational institution of higher education «Bauman Moscow state technical University» (National Research University), Hyperion Ltd http://orcid.org/0000-0001-7092-360X
  • Alexander Gudkov Federal state budgetary educational institution of higher education «Bauman Moscow state technical University (National Research University) http://orcid.org/0000-0002-8326-1542
  • Igor Sidorov Federal state budgetary educational institution of higher education «Bauman Moscow state technical University» (National Research University) http://orcid.org/0000-0002-8763-2689
  • Sergey Chizhikov Federal state budgetary educational institution of higher education «Bauman Moscow state technical University» (National Research University) http://orcid.org/0000-0001-7272-2916
  • Lev Mershin State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency http://orcid.org/0000-0001-5228-3637
  • Sergey Vesnin Federal state budgetary educational institution of higher education "Bauman Moscow state technical University» (National Research University) http://orcid.org/0000-0003-4353-8962
Keywords: microwave radiometry; FDTD method; temperature monitoring; multi-channel radiometer; multi-frequency radiometer

Abstract

The article is devoted to the development of a printed ultra-wideband miniature antenna that can be used for microwave radiometry. An antenna design with a ring-shaped radiator has been proposed, which provides reception of microwave radiation from biological tissues in the 1800–4600 MHz range. The results of mathematical modeling of the antenna electromagnetic field in biological tissues using the finite difference time domain (FDTD) method are presented. Optimization of the antenna design has been carried out to ensure acceptable matching parameters and optimal antenna functionality. The developed antenna has a height of 6 mm and a calculated mass of 5 g; it is planned to manufacture a dielectric substrate based on PDMS polymer with the addition of barium titanate. The issues of calculating the antenna parameters (measurement depth, resolution and distribution of radiation power over the volume of biological tissue, sensitivity, etc.) are considered. The research results and design parameters of the developed antenna demonstrated the effectiveness of the new antenna and the possibility of its adaptation to the object of research. Considering the presence of an ultra-wide band and miniature dimensions, the antenna can be a sensor of a multi-frequency multi-channel microwave radiothermograph

Downloads

Download data is not yet available.

References

Microwave radiometry in medicine. Available at: http://www.radiometry.ru/rtm-01-res/description/

Vesnin, S., Turnbull, A. K., Dixon, J. M., Goryanin, I. (2017). Modern Microwave Thermometry for Breast Cancer. Journal of Molecular Imaging & Dynamics, 7 (2). doi: https://doi.org/10.4172/2155-9937.1000136

Goryanin, I., Karbainov, S., Shevelev, O., Tarakanov, A., Redpath, K., Vesnin, S., Ivanov, Y. (2020). Passive microwave radiometry in biomedical studies. Drug Discovery Today, 25 (4), 757–763. doi: https://doi.org/10.1016/j.drudis.2020.01.016

Toutouzas, K., Grassos, H., Synetos, A., Drakopoulou, M., Tsiamis, E., Moldovan, C. et. al. (2011). A new non-invasive method for detection of local inflammation in atherosclerotic plaques: Experimental application of microwave radiometry. Atherosclerosis, 215 (1), 82–89. doi: https://doi.org/10.1016/j.atherosclerosis.2010.12.019

Toutouzas, K., Synetos, A., Nikolaou, C., Stathogiannis, K., Tsiamis, E., Stefanadis, C. (2012). Microwave radiometry: a new non-invasive method for the detection of vulnerable plaque. Cardiovascular diagnosis and therapy, 2 (4), 290–297. doi: http://doi.org/10.3978/j.issn.2223-3652.2012.10.09

Rodrigues, D. B., Stauffer, P. R., Pereira, P. J. S., Maccarini, P. F. (2018). Microwave Radiometry for Noninvasive Monitoring of Brain Temperature. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 87–127. doi: https://doi.org/10.1007/978-3-319-75007-1_5

Kublanov, V. S. (2013). Microwave Radiation as Interface to the Brain Functional State. Proceedings of the International Conference on Biomedical Electronics and Devices, 318–322. doi: https://doi.org/10.5220/0004371703180322

Cheboksarov, D. V., Butrov, A. V., Shevelev, O. A. et al. (2015). Diagnostic opportunities of noninvasive brain thermomonitoring. Anesteziologiia i Reanimatologiia, 60 (1) 66–69. Available at: https://europepmc.org/article/med/26027230

Crandall, J. P., O, J. H., Gajwani, P., Leal, J. P., Mawhinney, D. D., Sterzer, F., Wahl, R. L. (2018). Measurement of Brown Adipose Tissue Activity Using Microwave Radiometry and18F-FDG PET/CT. Journal of Nuclear Medicine, 59 (8), 1243–1248. doi: https://doi.org/10.2967/jnumed.117.204339

Zinovyev, S. V. (2018). New Medical Technology – Functional Microwave Thermography: Experimental Study. KnE Energy, 3 (2), 547. doi: https://doi.org/10.18502/ken.v3i2.1864

Arunachalam, K., Maccarini, P., De Luca, V., Tognolatti, P., Bardati, F., Snow, B., Stauffer, P. (2011). Detection of Vesicoureteral Reflux Using Microwave Radiometry – System Characterization With Tissue Phantoms. IEEE Transactions on Biomedical Engineering, 58 (6), 1629–1636. doi: https://doi.org/10.1109/tbme.2011.2107515

Gudkov, A. G., Leushin, V. Y., Sidorov, I. A., Vesnin, S. G., Porokhov, I. O., Sedankin, M. K. et. al. (2019). Use of Multichannel Microwave Radiometry for Functional Diagnostics of the Brain. Biomedical Engineering, 53 (2), 108–111. doi: https://doi.org/10.1007/s10527-019-09887-z

Gudkov, A. G., Leushin, V. Y., Vesnin, S. G., Sidorov, I. A., Sedankin, M. K., Solov’ev, Y. V. et. al. (2020). Studies of a Microwave Radiometer Based on Integrated Circuits. Biomedical Engineering, 53 (6), 413–416. doi: https://doi.org/10.1007/s10527-020-09954-w

Sedankin, M., Skuratov, V., Nelin, I., Mershin, L., Leushin, V., Vesnin, S. (2020). System of rational parameters of antennas for designing a multi-channel multi-frequency medical radiometer. 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 154–159. Available at: https://www.researchgate.net/publication/344548359_System_of_Rational_Parameters_of_Antennas_for_Designing_a_Multi-channel_Multi-frequency_Medical_Radiometer

Vesnin, S. G. (2008). Pat. No. 2407429 RF. Antenna-applicator and device for determining temperature changes of internal tissues of biological object and methods of determining temperature changes and cancer risk detection. No. 2008151958/14; declareted: 26.12.2008; published: 27.12.2010, Bul. No. 36. Available at: https://elibrary.ru/item.asp?id=37737636

Sedankin, M. K., Vesnin, S. G., Leushin, V. Yu., Agasieva, S. V., Chizhikov, S. V., Nazarov, V. V. et. al. (2020). Diagnostic conformal system for brain neuroimaging by using a multichannel radio thermometer based on monolithic integrated circuits. Nanotehnologii: razrabotka, primenenie - XXI vek, 12 (1), 43–50. Available at: https://elibrary.ru/item.asp?id=42757793

Popovic, Z., Momenroodaki, P., Scheeler, R. (2014). Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine, 52 (10), 118–125. doi: https://doi.org/10.1109/mcom.2014.6917412

Rodrigues, D. B., Maccarini, P. F., Salahi, S., Oliveira, T. R., Pereira, P. J. S., Limao-Vieira, P. et. al. (2014). Design and Optimization of an Ultra Wideband and Compact Microwave Antenna for Radiometric Monitoring of Brain Temperature. IEEE Transactions on Biomedical Engineering, 61 (7), 2154–2160. doi: https://doi.org/10.1109/tbme.2014.2317484

Lee, J. W., Lee, S. M., Kim, K. S., Han, W. T., Yoon, G., Pasmanik, L. A. et. al. (2004). Experimental investigation of the mammary gland tumour phantom for multifrequency microwave radio-thermometers. Medical & Biological Engineering & Computing, 42 (5), 581–590. doi: https://doi.org/10.1007/bf02347538

Chupina, D. N., Sedankin, M. K., Vesnin, S. G. (2017). Application of modern technologies of mathematical simulation for the development of medical equipment. 2017 IEEE 11th International Conference on Application of Information and Communication Technologies (AICT). doi: https://doi.org/10.1109/icaict.2017.8687066

Klemetsen, O., Jacobsen, S. (2012). Improved Radiometric Performance Attained by an Elliptical Microwave Antenna With Suction. IEEE Transactions on Biomedical Engineering, 59 (1), 263–271. doi: https://doi.org/10.1109/tbme.2011.2172441

Groumpas, E., Koutsoupidou, M., Uzunoglu, N., Karanasiou, I. S. (2017). Sensing local temperature and conductivity changes in a brain phantom using near-field microwave radiometry. 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT). doi: https://doi.org/10.1109/iwat.2017.7915383

Iudicello, S. (2009). Microwave radiometry for breast cancer detection. Universita’ degli studi tor vergata Roma, dipartimento di informatica, sistemi e produzione geoinformation research doctorate. Rome, 111.

Beaucamp-Ricard, C., Dubois, L., Vaucher, S., Cresson, P.-Y., Lasri, T., Pribetich, J. (2009). Temperature Measurement by Microwave Radiometry: Application to Microwave Sintering. IEEE Transactions on Instrumentation and Measurement, 58 (5), 1712–1719. doi: https://doi.org/10.1109/tim.2008.2009189

Vesnin, S. G., Sedankin, M. K., Gudkov, A. G., Leushin, V. Y., Sidorov, I. A., Porokhov, I. O. et. al. (2020). A Printed Antenna with an Infrared Temperature Sensor for a Medical Multichannel Microwave Radiometer. Biomedical Engineering. doi: https://doi.org/10.1007/s10527-020-10011-9

Tofighi, M.-R. (2011). Characterization of biomedical antennas for microwave heating, radiometry, and implant communication applications. WAMICON 2011 Conference Proceedings. doi: https://doi.org/10.1109/wamicon.2011.5872874

León, G., Herrán, L. F., Mateos, I., Villa, E., Ruiz-Alzola, J. B. (2020). Wideband Epidermal Antenna for Medical Radiometry. Sensors, 20 (7), 1987. doi: https://doi.org/10.3390/s20071987

Shabashov, E. P., Shabunin, S. N., Mrdakovic, B. (2020). Modeling and analysis of the spiral antenna properties for the research of the brain radiatio in the microwave range. Ural Radio Engineering Journal, 4 (1), 84–99. doi: https://doi.org/10.15826/urej.2020.4.1.005

Abufanas, H., Hadi, R. J., Sandhagen, C., Bangert, A. (2015). New approach for design and verification of a wideband Archimedean spiral antenna for radiometric measurement in biomedical applications. 2015 German Microwave Conference. doi: https://doi.org/10.1109/gemic.2015.7107769

Zakirov, A., Belousov, S., Valuev, I., Levchenko, V., Perepelkina, A., Zempo, Y. (2017). Using memory-efficient algorithm for large-scale time-domain modeling of surface plasmon polaritons propagation in organic light emitting diodes. Journal of Physics: Conference Series, 905, 012030. doi: https://doi.org/10.1088/1742-6596/905/1/012030

Valuev, I., Deinega, A., Knizhnik, A., Potapkin, B. (2007). Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming. Computational Science and Its Applications – ICCSA 2007, 213–226. doi: https://doi.org/10.1007/978-3-540-74484-9_19

IFAC. Available at: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php

Gabriel, S., Lau, R. W., Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41 (11), 2251–2269. doi: https://doi.org/10.1088/0031-9155/41/11/002

Li, X., Hagness, S. C. (2001). A confocal microwave imaging algorithm for breast cancer detection. IEEE Microwave and Wireless Components Letters, 11 (3), 130–132. doi: https://doi.org/10.1109/7260.915627

Salvado, R., Loss, C., Gonçalves, R., Pinho, P. (2012). Textile Materials for the Design of Wearable Antennas: A Survey. Sensors, 12 (11), 15841–15857. doi: https://doi.org/10.3390/s121115841

Koulouridis, S., Kiziltas, G., Zhou, Y., Hansford, D. J., Volakis, J. L. (2006). Polymer–Ceramic Composites for Microwave Applications: Fabrication and Performance Assessment. IEEE Transactions on Microwave Theory and Techniques, 54 (12), 4202–4208. doi: https://doi.org/10.1109/tmtt.2006.885887


Abstract views: 66
PDF Downloads: 51
Published
2020-11-30
How to Cite
Sedankin, M., Leushin , V., Gudkov, A., Sidorov , I., Chizhikov, S., Mershin , L., & Vesnin, S. (2020). DEVELOPMENT AND OPTIMIZATION OF AN ULTRA WIDEBAND MINIATURE MEDICAL ANTENNA FOR RADIOMETRIC MULTI-CHANNEL MULTI-FREQUENCY THERMAL MONITORING. EUREKA: Physics and Engineering, (6), 71-81. https://doi.org/10.21303/2461-4262.2020.001517
Section
Engineering