DEVELOPMENT AND OPTIMIZATION OF AN ULTRA WIDEBAND MINIATURE MEDICAL ANTENNA FOR RADIOMETRIC MULTI-CHANNEL MULTI-FREQUENCY THERMAL MONITORING
Abstract
The article is devoted to the development of a printed ultra-wideband miniature antenna that can be used for microwave radiometry. An antenna design with a ring-shaped radiator has been proposed, which provides reception of microwave radiation from biological tissues in the 1800–4600 MHz range. The results of mathematical modeling of the antenna electromagnetic field in biological tissues using the finite difference time domain (FDTD) method are presented. Optimization of the antenna design has been carried out to ensure acceptable matching parameters and optimal antenna functionality. The developed antenna has a height of 6 mm and a calculated mass of 5 g; it is planned to manufacture a dielectric substrate based on PDMS polymer with the addition of barium titanate. The issues of calculating the antenna parameters (measurement depth, resolution and distribution of radiation power over the volume of biological tissue, sensitivity, etc.) are considered. The research results and design parameters of the developed antenna demonstrated the effectiveness of the new antenna and the possibility of its adaptation to the object of research. Considering the presence of an ultra-wide band and miniature dimensions, the antenna can be a sensor of a multi-frequency multi-channel microwave radiothermograph
Downloads
References
Microwave radiometry in medicine. Available at: http://www.radiometry.ru/rtm-01-res/description/
Vesnin, S., Turnbull, A. K., Dixon, J. M., Goryanin, I. (2017). Modern Microwave Thermometry for Breast Cancer. Journal of Molecular Imaging & Dynamics, 7 (2). doi: https://doi.org/10.4172/2155-9937.1000136
Goryanin, I., Karbainov, S., Shevelev, O., Tarakanov, A., Redpath, K., Vesnin, S., Ivanov, Y. (2020). Passive microwave radiometry in biomedical studies. Drug Discovery Today, 25 (4), 757–763. doi: https://doi.org/10.1016/j.drudis.2020.01.016
Toutouzas, K., Grassos, H., Synetos, A., Drakopoulou, M., Tsiamis, E., Moldovan, C. et. al. (2011). A new non-invasive method for detection of local inflammation in atherosclerotic plaques: Experimental application of microwave radiometry. Atherosclerosis, 215 (1), 82–89. doi: https://doi.org/10.1016/j.atherosclerosis.2010.12.019
Toutouzas, K., Synetos, A., Nikolaou, C., Stathogiannis, K., Tsiamis, E., Stefanadis, C. (2012). Microwave radiometry: a new non-invasive method for the detection of vulnerable plaque. Cardiovascular diagnosis and therapy, 2 (4), 290–297. doi: http://doi.org/10.3978/j.issn.2223-3652.2012.10.09
Rodrigues, D. B., Stauffer, P. R., Pereira, P. J. S., Maccarini, P. F. (2018). Microwave Radiometry for Noninvasive Monitoring of Brain Temperature. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 87–127. doi: https://doi.org/10.1007/978-3-319-75007-1_5
Kublanov, V. S. (2013). Microwave Radiation as Interface to the Brain Functional State. Proceedings of the International Conference on Biomedical Electronics and Devices, 318–322. doi: https://doi.org/10.5220/0004371703180322
Cheboksarov, D. V., Butrov, A. V., Shevelev, O. A. et al. (2015). Diagnostic opportunities of noninvasive brain thermomonitoring. Anesteziologiia i Reanimatologiia, 60 (1) 66–69. Available at: https://europepmc.org/article/med/26027230
Crandall, J. P., O, J. H., Gajwani, P., Leal, J. P., Mawhinney, D. D., Sterzer, F., Wahl, R. L. (2018). Measurement of Brown Adipose Tissue Activity Using Microwave Radiometry and18F-FDG PET/CT. Journal of Nuclear Medicine, 59 (8), 1243–1248. doi: https://doi.org/10.2967/jnumed.117.204339
Zinovyev, S. V. (2018). New Medical Technology – Functional Microwave Thermography: Experimental Study. KnE Energy, 3 (2), 547. doi: https://doi.org/10.18502/ken.v3i2.1864
Arunachalam, K., Maccarini, P., De Luca, V., Tognolatti, P., Bardati, F., Snow, B., Stauffer, P. (2011). Detection of Vesicoureteral Reflux Using Microwave Radiometry – System Characterization With Tissue Phantoms. IEEE Transactions on Biomedical Engineering, 58 (6), 1629–1636. doi: https://doi.org/10.1109/tbme.2011.2107515
Gudkov, A. G., Leushin, V. Y., Sidorov, I. A., Vesnin, S. G., Porokhov, I. O., Sedankin, M. K. et. al. (2019). Use of Multichannel Microwave Radiometry for Functional Diagnostics of the Brain. Biomedical Engineering, 53 (2), 108–111. doi: https://doi.org/10.1007/s10527-019-09887-z
Gudkov, A. G., Leushin, V. Y., Vesnin, S. G., Sidorov, I. A., Sedankin, M. K., Solov’ev, Y. V. et. al. (2020). Studies of a Microwave Radiometer Based on Integrated Circuits. Biomedical Engineering, 53 (6), 413–416. doi: https://doi.org/10.1007/s10527-020-09954-w
Sedankin, M., Skuratov, V., Nelin, I., Mershin, L., Leushin, V., Vesnin, S. (2020). System of rational parameters of antennas for designing a multi-channel multi-frequency medical radiometer. 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 154–159. Available at: https://www.researchgate.net/publication/344548359_System_of_Rational_Parameters_of_Antennas_for_Designing_a_Multi-channel_Multi-frequency_Medical_Radiometer
Vesnin, S. G. (2008). Pat. No. 2407429 RF. Antenna-applicator and device for determining temperature changes of internal tissues of biological object and methods of determining temperature changes and cancer risk detection. No. 2008151958/14; declareted: 26.12.2008; published: 27.12.2010, Bul. No. 36. Available at: https://elibrary.ru/item.asp?id=37737636
Sedankin, M. K., Vesnin, S. G., Leushin, V. Yu., Agasieva, S. V., Chizhikov, S. V., Nazarov, V. V. et. al. (2020). Diagnostic conformal system for brain neuroimaging by using a multichannel radio thermometer based on monolithic integrated circuits. Nanotehnologii: razrabotka, primenenie - XXI vek, 12 (1), 43–50. Available at: https://elibrary.ru/item.asp?id=42757793
Popovic, Z., Momenroodaki, P., Scheeler, R. (2014). Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine, 52 (10), 118–125. doi: https://doi.org/10.1109/mcom.2014.6917412
Rodrigues, D. B., Maccarini, P. F., Salahi, S., Oliveira, T. R., Pereira, P. J. S., Limao-Vieira, P. et. al. (2014). Design and Optimization of an Ultra Wideband and Compact Microwave Antenna for Radiometric Monitoring of Brain Temperature. IEEE Transactions on Biomedical Engineering, 61 (7), 2154–2160. doi: https://doi.org/10.1109/tbme.2014.2317484
Lee, J. W., Lee, S. M., Kim, K. S., Han, W. T., Yoon, G., Pasmanik, L. A. et. al. (2004). Experimental investigation of the mammary gland tumour phantom for multifrequency microwave radio-thermometers. Medical & Biological Engineering & Computing, 42 (5), 581–590. doi: https://doi.org/10.1007/bf02347538
Chupina, D. N., Sedankin, M. K., Vesnin, S. G. (2017). Application of modern technologies of mathematical simulation for the development of medical equipment. 2017 IEEE 11th International Conference on Application of Information and Communication Technologies (AICT). doi: https://doi.org/10.1109/icaict.2017.8687066
Klemetsen, O., Jacobsen, S. (2012). Improved Radiometric Performance Attained by an Elliptical Microwave Antenna With Suction. IEEE Transactions on Biomedical Engineering, 59 (1), 263–271. doi: https://doi.org/10.1109/tbme.2011.2172441
Groumpas, E., Koutsoupidou, M., Uzunoglu, N., Karanasiou, I. S. (2017). Sensing local temperature and conductivity changes in a brain phantom using near-field microwave radiometry. 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (iWAT). doi: https://doi.org/10.1109/iwat.2017.7915383
Iudicello, S. (2009). Microwave radiometry for breast cancer detection. Universita’ degli studi tor vergata Roma, dipartimento di informatica, sistemi e produzione geoinformation research doctorate. Rome, 111.
Beaucamp-Ricard, C., Dubois, L., Vaucher, S., Cresson, P.-Y., Lasri, T., Pribetich, J. (2009). Temperature Measurement by Microwave Radiometry: Application to Microwave Sintering. IEEE Transactions on Instrumentation and Measurement, 58 (5), 1712–1719. doi: https://doi.org/10.1109/tim.2008.2009189
Vesnin, S. G., Sedankin, M. K., Gudkov, A. G., Leushin, V. Y., Sidorov, I. A., Porokhov, I. O. et. al. (2020). A Printed Antenna with an Infrared Temperature Sensor for a Medical Multichannel Microwave Radiometer. Biomedical Engineering. doi: https://doi.org/10.1007/s10527-020-10011-9
Tofighi, M.-R. (2011). Characterization of biomedical antennas for microwave heating, radiometry, and implant communication applications. WAMICON 2011 Conference Proceedings. doi: https://doi.org/10.1109/wamicon.2011.5872874
León, G., Herrán, L. F., Mateos, I., Villa, E., Ruiz-Alzola, J. B. (2020). Wideband Epidermal Antenna for Medical Radiometry. Sensors, 20 (7), 1987. doi: https://doi.org/10.3390/s20071987
Shabashov, E. P., Shabunin, S. N., Mrdakovic, B. (2020). Modeling and analysis of the spiral antenna properties for the research of the brain radiatio in the microwave range. Ural Radio Engineering Journal, 4 (1), 84–99. doi: https://doi.org/10.15826/urej.2020.4.1.005
Abufanas, H., Hadi, R. J., Sandhagen, C., Bangert, A. (2015). New approach for design and verification of a wideband Archimedean spiral antenna for radiometric measurement in biomedical applications. 2015 German Microwave Conference. doi: https://doi.org/10.1109/gemic.2015.7107769
Zakirov, A., Belousov, S., Valuev, I., Levchenko, V., Perepelkina, A., Zempo, Y. (2017). Using memory-efficient algorithm for large-scale time-domain modeling of surface plasmon polaritons propagation in organic light emitting diodes. Journal of Physics: Conference Series, 905, 012030. doi: https://doi.org/10.1088/1742-6596/905/1/012030
Valuev, I., Deinega, A., Knizhnik, A., Potapkin, B. (2007). Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming. Computational Science and Its Applications – ICCSA 2007, 213–226. doi: https://doi.org/10.1007/978-3-540-74484-9_19
IFAC. Available at: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php
Gabriel, S., Lau, R. W., Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41 (11), 2251–2269. doi: https://doi.org/10.1088/0031-9155/41/11/002
Li, X., Hagness, S. C. (2001). A confocal microwave imaging algorithm for breast cancer detection. IEEE Microwave and Wireless Components Letters, 11 (3), 130–132. doi: https://doi.org/10.1109/7260.915627
Salvado, R., Loss, C., Gonçalves, R., Pinho, P. (2012). Textile Materials for the Design of Wearable Antennas: A Survey. Sensors, 12 (11), 15841–15857. doi: https://doi.org/10.3390/s121115841
Koulouridis, S., Kiziltas, G., Zhou, Y., Hansford, D. J., Volakis, J. L. (2006). Polymer–Ceramic Composites for Microwave Applications: Fabrication and Performance Assessment. IEEE Transactions on Microwave Theory and Techniques, 54 (12), 4202–4208. doi: https://doi.org/10.1109/tmtt.2006.885887
Copyright (c) 2020 Mikhail Sedankin, Vitaly Leushin , Alexander Gudkov, Igor Sidorov , Sergey Chizhikov, Lev Mershin , Sergey Vesnin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.
