Biofuel production over Fischer-Tropsch synthesis: effect of Fe-Co/meso-HZSM-5 catalyst weight on product composition and process conversion

Keywords: biofuel, HZSM-5, desilication, mesopore, catalyst, iron, cobalt, weight, conversion, Fischer-Tropsch


Fischer-Tropsch Synthesis (FTS) using Fe-Co/meso-HZSM-5 catalyst has been investigated. The impregnated iron and cobalt on HZSM-5 could be used as bifunction catalyst which combined polimerizing synthesis gas and long hydrocarbon cracking for making biofuel (saturated C5–C25 hydrocarbons as gasoline, kerosene and diesel oil). The study emphasized the effect of catalyst weight on product composition and process conversion. The HZSM-5, had been converted from ammonium ZSM-5 through calcination, and then desilicated with NaOH solution. The Co(NO3)2.6H2O and Fe(NO3)3.9H2O were used as precursor for incipient wetness impregnation (IWI) on amorphous meso-HZSM-5. The catalyst consisted of 10 % Fe and 90 % Co by weight, called 10Fe-90Co/meso-HZSM-5. All catalysts were reduced in situ in the continuous reactor with flowing hydrogen at 25 mL/min, 1 bar, 400 °C for 10 hours. The catalyst performance was observed in the same continuous fixed bed reactor at 25 mL/min synthesis gas (30 % CO, 60 % H2, 10 % N2), 250 °C, 20 bar for 96 hours. Various catalyst weight (1, 1.2, 1.4, 1.6 gram) were applied in FTS. The desilicated HZSM-5 properties (BET analysis) were 6.1–29.9 nm mesoporous diameter, 0.3496 cc/g average mesoporous volume, 526.035 cc/g pore surface area, and the EDX analysis gave 22.1059 Si/Al ratio and 16.11 % loading (by weight) on meso-HZSM-5. The reduced catalyst showed the XRD spectra of Fe (66°), Fe-Co alloy (44.50°) and Co3O4 (36.80°). The reaction using 1 gram of 10Fe-90Co/meso-HZSM-5 catalyst produced the largest composition and conversion. The 1 gram catalyst gave the largest normal selectivity of gasoline (19.15 %) and kerosene (55.18 %). While the largest normal diesel oil selectivity (24.17 %) was obtained from 1.4 gram of catalyst. The CO conversion per gram of catalyst showed similar value (CO conversion of 26–28 %) for all catalyst weight


Download data is not yet available.

Author Biographies

Jimmy Jimmy, National Institute of Technology (ITN Malang)

Department of Chemical Engineering

Achmad Roesyadi, Institut Teknologi Sepuluh Nopember

Department of Chemical Engineering

Suprapto Suprapto, Institut Teknologi Sepuluh Nopember

Department of Chemical Engineering

Firman Kurniawansyah, Institut Teknologi Sepuluh Nopember

Department of Chemical Engineering


Wang, Y., Wang, R., Xu, D., Sun, C., Ni, L., Fu, W. et. al. (2016). Synthesis and properties of MFI zeolites with microporous, mesoporous and macroporous hierarchical structures by a gel-casting technique. New Journal of Chemistry, 40 (5), 4398–4405. doi:

Sun, X., Sartipi, S., Kapteijn, F., Gascon, J. (2016). Effect of pretreatment atmosphere on the activity and selectivity of Co/mesoHZSM-5 for Fischer–Tropsch synthesis. New Journal of Chemistry, 40 (5), 4167–4177. doi:

Valero-Romero, M. J., Sartipi, S., Sun, X., Rodríguez-Mirasol, J., Cordero, T., Kapteijn, F., Gascon, J. (2016). Carbon/H-ZSM-5 composites as supports for bi-functional Fischer–Tropsch synthesis catalysts. Catalysis Science & Technology, 6 (8), 2633–2646. doi:

Jimmy, Ihsanti, D. H., Roesyadi, A., Suprapto, Kurniawansyah, F. (2019). Synthesis and Characterization of Fe-Co/meso-HZSM-5: Effect of Impregnated Ratio of Iron and Cobalt. IOP Conference Series: Materials Science and Engineering, 546, 072003. doi:

Ihsanti, D. H., Jimmy, Kurniawansyah, F., Suprapto, Roesyadi, A. (2019). Performance of Bimetallic Fe and Co Catalyst Supported on HZSM-5 for Fischer-Tropsch Synthesis. IOP Conference Series: Materials Science and Engineering, 546, 042012. doi:

Jimmy, Roesyadi, A., Suprapto, Kurniawansyah, F. (2020). Synthesis and characterization of Fe-Co/mesoHZSM-5: Effect of desilication agent and iron-cobalt composition. Korean Chemical Engineering Research, 58 (1), 163–169. doi:

Sineva, L. V., Asalieva, E. Y., Mordkovich, V. Z. (2015). The role of zeolite in the Fischer–Tropsch synthesis over cobalt–zeolite catalysts. Russian Chemical Reviews, 84 (11), 1176–1189. doi:

Pour, A. N., Zare, M., Kamali Shahri, S. M., Zamani, Y., Alaei, M. R. (2009). Catalytic behaviors of bifunctional Fe-HZSM-5 catalyst in Fischer–Tropsch synthesis. Journal of Natural Gas Science and Engineering, 1 (6), 183–189. doi:

Sartipi, S., Parashar, K., Valero-Romero, M. J., Santos, V. P., van der Linden, B., Makkee, M. et. al. (2013). Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. Journal of Catalysis, 305, 179–190. doi:

Kim, C.-U., Kim, Y.-S., Chae, H.-J., Jeong, K.-E., Jeong, S.-Y., Jun, K.-W., Lee, K.-Y. (2010). Effect of cobalt catalyst type and reaction medium on Fischer-Tropsch synthesis. Korean Journal of Chemical Engineering, 27 (3), 777–784. doi:

Davis, B. H. (2007). Fischer-Tropsch Synthesis: Comparison of Performances of Iron and Cobalt Catalysts. Industrial & Engineering Chemistry Research, 46 (26), 8938–8945. doi:

Min, S. K., No, S.-R., You, S.-S. (2017). Effect of composition of γ-Al2O3/SiO2 mixed support on Fischer-Tropsch synthesis with iron catalyst. Korean Chemical Engineering Research, 55 (3), 436–442. doi:

Mukenz, T. M. (2010). Fischer-Tropsch Reaction: Towards understanding the mixed iron-cobalt catalyst systems. Johannesburg.

Ali, S., Mohd Zabidi, N. A., Subbarao, D. (2011). Correlation between Fischer-Tropsch catalytic activity and composition of catalysts. Chemistry Central Journal, 5 (1). doi:

Mansouri, M., Atashi, H. (2016). Fischer-tropsch synthesis over potassium-promoted Co-Fe/SiO2 catalyst. Indian Journal of Chemical Technology, 23 (2), 453–461.

Maitlis, P. M., de Klerk, A. (Eds.) (2013). Greener Fischer‐Tropsch Processes for Fuels and Feedstocks. Wiley‐VCH Verlag GmbH & Co. KGaA. doi:

Davis, B. H. (2001). Fischer–Tropsch synthesis: current mechanism and futuristic needs. Fuel Processing Technology, 71 (1-3), 157–166. doi:

Filot, I. A. W., van Santen, R. A., Hensen, E. J. M. (2014). The Optimally Performing Fischer-Tropsch Catalyst. Angewandte Chemie International Edition, 53 (47), 12746–12750. doi:

Al Fatony, Z., Febriani, Y., Makertihartha, I., Gunawan, M. L., Subagjo. (2019). Acidity effects of K promoted Co-based catalyst with NH4OH addition of the impregnation solution for Fischer-Tropsch synthesis. MATEC Web of Conferences, 268, 07001. doi:

Al Fatony, Z., Resha, A. H., Persada, G. P. et. al. (2018). Effects of Cu on the modified Co-based catalyst activity for fischer-tropsch synthesis. ASEAN J. Chem. Eng., 18 (1), 60–70. Available at:

Lippens, B. (1965). Studies on pore systems in catalysts V. The t method. Journal of Catalysis, 4 (3), 319–323. doi:

Barrett, E. P., Joyner, L. G., Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73 (1), 373–380. doi:

Tavasoli, A., Trépanier, M., Malek Abbaslou, R. M., Dalai, A. K., Abatzoglou, N. (2009). Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts supported on carbon nanotubes. Fuel Processing Technology, 90 (12), 1486–1494. doi:

Kim, J.-C., Lee, S., Cho, K., Na, K., Lee, C., Ryoo, R. (2014). Mesoporous MFI Zeolite Nanosponge Supporting Cobalt Nanoparticles as a Fischer–Tropsch Catalyst with High Yield of Branched Hydrocarbons in the Gasoline Range. ACS Catalysis, 4 (11), 3919–3927. doi:

👁 43
⬇ 31
How to Cite
Jimmy, J., Roesyadi, A., Suprapto, S., & Kurniawansyah, F. (2021). Biofuel production over Fischer-Tropsch synthesis: effect of Fe-Co/meso-HZSM-5 catalyst weight on product composition and process conversion. EUREKA: Physics and Engineering, (6), 19-27.
Chemical Engineering