Analysis of physical properties and compressibility of avian eggshell nanopowders in solid state reaction

Keywords: Phase identification, compressibility, avian eggshell, solid state reaction, ball milling, milling time, morphology, molecular bonding, bioceramic, grain shape

Abstract

Eggshell is bioceramic material that produces by avian that commonly contains of 94 % calcium carbonate, 1 % magnesium carbonate, 1 % calcium phosphate, and 4 % other organic element. This study proposed to investigate the synthesis and characterization of avian eggshell powders. The avian eggshell that used in this study involved chicken, duck, and quail eggshells. The characterization of avian eggshell nanopowder for reducing their grain size from micro to nano involved ball milling process (solid state reaction) with the variation of milling times (3, 5, and 7 hours) and sintering temperature at 1000 oC for 2 hours. X-Ray Diffraction (XRD) test presented the phase characterization of quail eggshell nanopowder which ball-milled for 7 hours, obtained the smallest crystallite size at 19.2 nm. Scanning Electron Microscopy (SEM) test presented the morphological analysis that showed changes in grain size and shape of each variety of the avian eggshell such as spherical, oval, wormlike, cubical, triangular, and some irregular grains. Energy Dispersive X-Ray (EDX) test presented the compound in avian eggshell powders that showed Ca and O level were the highest, while C was the lowest level. Fourier Transform Infrared (FTIR) test presented the possibility of the functional group of the avian eggshell powders that showed Ca-O, Ca=O groups, CaCO3, asymmetric C-O, -CO3, amide, C=O, -OH, alkyl CH, and C-H. While compressibility shown the increase along with the decrease of crystallite and particles size in cubical grain. The highest compression ratio is 67.75 % for chicken eggshell nano powder with 5 hours milling time at 2000 kgf of compression loading

Downloads

Download data is not yet available.

Author Biographies

Poppy Puspitasari, State University of Malang

Departement of Mechanical Engineering

Center of Nano Research and Advanced Materials

Muhammad Asrorul Iftiharsa, State University of Malang

Departement of Mechanical Engineering

Herin Fikri Naufal Zhorifah, State University of Malang

Departement of Mechanical Engineering

Rara Warih Gayatri, State University of Malang

Public Health Department

References

Sun, C., Duan, Z., Qu, L., Zheng, J., Yang, N., Xu, G. (2016). Expression analysis for candidate genes associated with eggshell mechanical property. Journal of Integrative Agriculture, 15 (2), 397–402. doi: https://doi.org/10.1016/s2095-3119(14)60969-2

Hincke, M., Gautron, J., Rodriguez-Navarro, A. B., McKee, M. D. (2011). The eggshell: structure and protective function. Improving the Safety and Quality of Eggs and Egg Products, 151–182. doi: https://doi.org/10.1533/9780857093912.2.151

Aygun, A. (2017). The Eggshell Microbial Activity. Egg Innovations and Strategies for Improvements, 135–144. doi: https://doi.org/10.1016/b978-0-12-800879-9.00013-5

Fernandes, E. de A., Litz, F. H. (2017). The Eggshell and Its Commercial and Production Importance. Egg Innovations and Strategies for Improvements, 261–270. doi: https://doi.org/10.1016/b978-0-12-800879-9.00025-1

Yew, M. C., Ramli Sulong, N. H., Yew, M. K., Amalina, M. A., Johan, M. R. (2013). The formulation and study of the thermal stability and mechanical properties of an acrylic coating using chicken eggshell as a novel bio-filler. Progress in Organic Coatings, 76 (11), 1549–1555. doi: https://doi.org/10.1016/j.porgcoat.2013.06.011

Saeb, M. R., Rastin, H., Nonahal, M., Paran, S. M. R., Khonakdar, H. A., Puglia, D. (2018). Cure kinetics of epoxy/chicken eggshell biowaste composites: Isothermal calorimetric and chemorheological analyses. Progress in Organic Coatings, 114, 208–215. doi: https://doi.org/10.1016/j.porgcoat.2017.10.018

Zhorifah, H. F. N., Puspitasari, P., Andoko, Tsamroh, D. I., Permanasari, A. A. (2019). Optimization of the mastication strength of hydroxyapatite as an eggshell-based tooth filler. International Conference on Biology and Applied Science (ICOBAS). doi: https://doi.org/10.1063/1.5115686

Supriyanto, N. S. W., Sukarni, Puspitasari, P., Permanasari, A. A. (2019). Synthesis and characterization of CaO/CaCO3 from quail eggshell waste by solid state reaction process. International Conference on Biology and Applied Science (ICOBAS). doi: https://doi.org/10.1063/1.5115670

Ayodeji, A. A., Modupe, O. E., Rasheed, B., Ayodele, J. M. (2018). Data on CaO and eggshell catalysts used for biodiesel production. Data in Brief, 19, 1466–1473. doi: https://doi.org/10.1016/j.dib.2018.06.028

Pliya, P., Cree, D. (2015). Limestone derived eggshell powder as a replacement in Portland cement mortar. Construction and Building Materials, 95, 1–9. doi: https://doi.org/10.1016/j.conbuildmat.2015.07.103

Jayasree, R., Madhumathi, K., Rana, D., Ramalingam, M., Nankar, R. P., Doble, M., Kumar, T. S. S. (2018). Development of Egg Shell Derived Carbonated Apatite Nanocarrier System for Drug Delivery. Journal of Nanoscience and Nanotechnology, 18 (4), 2318–2324. doi: https://doi.org/10.1166/jnn.2018.14377

Zhu, H., Guo, D., Sun, L., Li, H., Hanaor, D. A. H., Schmidt, F., Xu, K. (2018). Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite. Journal of the European Ceramic Society, 38 (16), 5554–5562. doi: https://doi.org/10.1016/j.jeurceramsoc.2018.07.056

Puspitasari, P., Safarudin, R. A., Sasongko, M. I. N., Achyarsyah, M., Andoko. (2019). Analysis of Mechanical and Physical Properties of Al-Si (Al-Si) Casting Alloys Reinforced with Various Eggshell Nanopowders. IOP Conference Series: Materials Science and Engineering, 515, 012028. doi: https://doi.org/10.1088/1757-899x/515/1/012028

Bodnarova, L., Guzii, S., Hela, R., Krivenko, P., Vozniuk, G. (2018). Nano-Structured Alkaline Aluminosilicate Binder by Carbonate Mineral Addition. Solid State Phenomena, 276, 192–197. doi: https://doi.org/10.4028/www.scientific.net/ssp.276.192

Puspitasari, P., Yuwanda, V., Sukarni, Dika, J. W. (2019). The Properties of Eggshell Powders with the Variation of Sintering Duration. IOP Conference Series: Materials Science and Engineering, 515, 012104. doi: https://doi.org/10.1088/1757-899x/515/1/012104

Nandiyanto, A. B. D., Andika, R., Aziz, M., Riza, L. S. (2018). Working Volume and Milling Time on the Product Size/Morphology, Product Yield, and Electricity Consumption in the Ball-Milling Process of Organic Material. Indonesian Journal of Science and Technology, 3 (2), 82. doi: https://doi.org/10.17509/ijost.v3i2.12752

Qosim, N., Murdanto, P., Puspitasari, P. (2018). Analisis Sifat Fisik dan Kompresibilitas Nanopowder Zinc Oxide (ZnO) sebagai Alternatif Material Amalgam. Jurnal Rekayasa Mesin, 9 (1), 9–14. doi: https://doi.org/10.21776/ub.jrm.2018.009.01.2

Tizo, M. S., Blanco, L. A. V., Cagas, A. C. Q., Dela Cruz, B. R. B., Encoy, J. C., Gunting, J. V. et. al. (2018). Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution. Sustainable Environment Research, 28 (6), 326–332. doi: https://doi.org/10.1016/j.serj.2018.09.002

Carvalho, J., Araujo, J., Castro, F. (2011). Alternative Low-cost Adsorbent for Water and Wastewater Decontamination Derived from Eggshell Waste: An Overview. Waste and Biomass Valorization, 2 (2), 157–167. doi: https://doi.org/10.1007/s12649-010-9058-y

Choudhary, R., Koppala, S., Swamiappan, S. (2015). Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. Journal of Asian Ceramic Societies, 3 (2), 173–177. doi: https://doi.org/10.1016/j.jascer.2015.01.002

Mohamed, M. A., Jaafar, J., Ismail, A. F., Othman, M. H. D., Rahman, M. A. (2017). Fourier Transform Infrared (FTIR) Spectroscopy. Membrane Characterization, 3–29. doi: https://doi.org/10.1016/b978-0-444-63776-5.00001-2

Neikov, O. D., Yefimov, N. A. (2019). Powder Characterization and Testing. Handbook of Non-Ferrous Metal Powders, 3–62. doi: https://doi.org/10.1016/b978-0-08-100543-9.00001-4

Yu, Y., Zhao, L., Lin, X., Wang, Y., Feng, Y. (2020). A model to simultaneously evaluate the compressibility and compactibility of a powder based on the compression ratio. International Journal of Pharmaceutics, 577, 119023. doi: https://doi.org/10.1016/j.ijpharm.2020.119023

Espin, M. J., Ebri, J. M. P., Valverde, J. M. (2019). Tensile strength and compressibility of fine CaCO3 powders. Effect of nanosilica addition. Chemical Engineering Journal, 378, 122166. doi: https://doi.org/10.1016/j.cej.2019.122166

Llusa, M., Faulhammer, E., Biserni, S., Calzolari, V., Lawrence, S., Bresciani, M., Khinast, J. (2014). The effects of powder compressibility, speed of capsule filling and pre-compression on plug densification. International Journal of Pharmaceutics, 471 (1-2), 182–188. doi: https://doi.org/10.1016/j.ijpharm.2014.04.073

Schatt, W., Wieters, K.-P. (1997). Powder Metallurgy - Processing and Materials. EPMA, 492.

German, R. M. (2014). Sintering: From Empirical Observations to Scientific Principles. Butterworth-Heinemann. doi: https://doi.org/10.1016/c2012-0-00717-x

El-Eskandarany, M. S. (2015). Controlling the powder milling process. Mechanical Alloying, 48–83. doi: https://doi.org/10.1016/b978-1-4557-7752-5.00003-6

El-Eskandarany, M. S. (2015). Controlling the powder milling process. Mechanical Alloying, 48–83. doi: https://doi.org/10.1016/b978-1-4557-7752-5.00003-6

Farzadi, A., Solati-Hashjin, M., Bakhshi, F., Aminian, A. (2011). Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceramics International, 37 (1), 65–71. doi: https://doi.org/10.1016/j.ceramint.2010.08.021


👁 337
⬇ 282
Published
2021-09-13
How to Cite
Puspitasari, P., Iftiharsa, M. A., Zhorifah, H. F. N., & Gayatri, R. W. (2021). Analysis of physical properties and compressibility of avian eggshell nanopowders in solid state reaction. EUREKA: Physics and Engineering, (5), 110-120. https://doi.org/10.21303/2461-4262.2021.001670
Section
Material Science