STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF THE TURNING PROCESS OF EN 10503 STEEL BY COMBINATION OF TAGUCHI METHOD AND MOORA TECHNIQUE

Keywords: Multi-Objective Optimization, Taguchi, Moora, Turning process, EN 10503 Steel

Abstract

In this study, the multi-objective optimization problem of turning process was successfully solved by a Taguchi combination method and MOORA techniques. In external turning process of EN 10503 steel, surface grinding process, the orthogonal Taguchi L9 matrix was selected to design the experimental matrix with four input parameters namely insert nose radius, cutting velocity, feed rate, and depth of cut. The parameters that were chosen as the evaluation criteria of the machining process were the surface roughness (Ra), the cutting force amplitudes in X, Y, Z directions, and the material removal rate (MRR). Using Taguchi method and MOORA technique, the optimized results of the cutting parameters were determined to obtain the minimum values of surface roughness and cutting force amplitudes in X, Y, Z directions, and maximum value of MRR. These optimal values of insert nose radius, cutting velocity, feed rate, and cutting depth were 1.2 mm, 76.82 m/min, 0.194 mm/rev, and 0.15 mm, respectively. Corresponding to these optimal values of the input parameters, the surface roughness, cutting force amplitudes in X, Y, Z directions, and material removal rate were 0.675 µm, 124.969 N, 40.545 N, 164.206 N, and 38.130 mm3/s, respectively. The proposed method in this study can be applied to improve the quality and effectiveness of turning processes by improving the surface quality, reducing the cutting force amplitudes, and increasing the material removal rate. Finally, the research direction was also proposed in this study

Downloads

Download data is not yet available.

Author Biographies

Do Duc Trung, Hanoi University of Industry

Department of Mechanical Engineering

Nhu-Tung Nguyen, Hanoi University of Industry

Department of Mechanical Engineering

Duong Van Duc, Hanoi University of Industry

Department of Mechanical Engineering

References

Do Duc, T., Nguyen Ba, N., Nguyen Van, C., Nguyen Nhu, T., Hoang Tien, D. (2020). Surface Roughness Prediction in CNC Hole Turning of 3X13 Steel using Support Vector Machine Algorithm. Tribology in Industry, 42 (4), 597–607. doi: https://doi.org/10.24874/ti.940.08.20.11

Makadia, A. J., Nanavati, J. I. (2013). Optimisation of machining parameters for turning operations based on response surface methodology. Measurement, 46 (4), 1521–1529. doi: https://doi.org/10.1016/j.measurement.2012.11.026

Frifita, W., Ben Salem, S., Haddad, A., Yallese, M. A. (2020). Optimization of machining parameters in turning of Inconel 718 Nickel-base super alloy. Mechanics & Industry, 21 (2), 203. doi: https://doi.org/10.1051/meca/2020001

Chopra, A., Singh, L. (2017). Optimization of Cutting Parameters in Turning Process for Inconel 718 using RSM. International Journal for Scientific Research & Development, 5 (7), 803–807.

Bhuiyan, T. H., Ahmed, I. (2014). Optimization of Cutting Parameters in Turning Process. SAE International Journal of Materials and Manufacturing, 7 (1), 233–239. doi: https://doi.org/10.4271/2014-01-9097

Poornima, Sukumar (2012). Optimization of machining parameters in CNC turning of martensitic stainless steel using RSM and GA. International Journal of Modern Engineering Research, 2 (2), 539–542.

Ganesh, M., Kumar, M. U., Kumar, V., Kumar, B. S. (2014). Optimization of cutting parameters in turning of EN 8 steel using response surface method and genetic algorithm. International jounrnal of mechanical engineering and robotics research, 3 (2), 75–86.

Pourmostaghimi, V., Zadshakoyan, M., Badamchizadeh, M. A. (2020). Intelligent model-based optimization of cutting parameters for high quality turning of hardened AISI D2. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 34 (3), 421–429. doi: https://doi.org/10.1017/s089006041900043x

Qiao, Y., Ai, X., Liu, Z. Q. (2010). Selection of Tool Materials and Cutting Parameters Optimization for Turning Nickel-Based Powder Metallurgy Superalloy. Advanced Materials Research, 154-155, 708–711. doi: https://doi.org/10.4028/www.scientific.net/amr.154-155.708

Serra, R., Chibane, H., Duchosal, A. (2018). Multi-objective optimization of cutting parameters for turning AISI 52100 hardened steel. The International Journal of Advanced Manufacturing Technology, 99 (5-8), 2025–2034. doi: https://doi.org/10.1007/s00170-018-2373-3

Sahu, P. K., Sahu, N. K., Dubey, A. (2017). Optimization of cutting parameters by turning operation in lathe machine. International Journal of Mechanical and Production Engineering, 5 (11), 46–51.

Lazarević, D., Madić, M., Janković, P., Lazarević, A. (2012). Cutting Parameters Optimization for Surface Roughness in Turning Operation of Polyethylene (PE) Using Taguchi Method. Tribology in Industry, 34 (2), 68–73.

Upletawala, M. A. I., Katratwar, T. (2016). Optimization of Cutting Parameters for Turning Operation on Thermoplastic Polymer-Delrin 500AL. International Journal of Innovative Research in Science, Engineering and Technology, 5 (8), 15545–15553.

Banerjee, S., Kundu, S., Choudhury, S., Chatterjee, A. (2017). Process parameter optimization in lathe turning operation to improve the surface roughness and reduce the cutting force using Taguchi method. International journal of innovations in engineering research and technology, 4 (8), 1–8.

Babu, D. M., Kumar, M. S., Vishnuu, J. (2012). Optimization of cutting parameters for CNC turned parts using Taguchi’s technique. Annals of faculty engineering Hunedoara – International journal of engineering, 10 (3), 493–496.

Basmaci, G. (2018). Optimization of Machining Parameters for the Turning Process of AISI 316 L Stainless Steel and Taguchi Design. Acta Physica Polonica A, 134 (1), 260–264. doi: https://doi.org/10.12693/aphyspola.134.260

Dutta, S., Kumar Reddy Narala, S. (2021). Optimizing turning parameters in the machining of AM alloy using Taguchi methodology. Measurement, 169, 108340. doi: https://doi.org/10.1016/j.measurement.2020.108340

Chomsamutr, K., Jongprasithporn, S. (2010). The cutting parameters design for product quality improvement in turning operations: Optimization and validation with Taguchi method. The 40th International Conference on Computers & Indutrial Engineering. doi: https://doi.org/10.1109/iccie.2010.5668340

Yang, W. H., Tarng, Y. S. (1998). Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology, 84 (1-3), 122–129. doi: https://doi.org/10.1016/s0924-0136(98)00079-x

Patod, S. K., Sharma, D. S. (2019). Optimization of CNC Turning Cutting Parameter for Geometrical Dimensional Accuracy with Surface roughness on the non-ferrous Material Applying Taguchi Technique. International Journal of Engineering Trends and Technology, 67 (12), 56–66. doi: https://doi.org/10.14445/22315381/ijett-v67i12p210

Saraswat, N., Yadav, A., Kumar, A., Srivastava, B. P. (2014). Optimization of Cutting Parameters in Turning Operation of Mild Steel. International Review of Applied Engineering Research, 4 (3), 251–256.

Kajal, S., Yadav, S. (2015). Optimization of CNC Turning Parameters for Surface Roughness on EN 354 Steel using Taguchi Method. Journal of Material Science and Mechanical Engineering, 2 (10), 54–57.

Shahebrahimi, S. P., Dadvand, A. (2013). Optimization of Cutting Parameters for Turning Operation of Titanium Alloy Ti-6Al-4V Material Workpiece Using the Taguchi Method. Advanced Materials Research, 685, 57–62. doi: https://doi.org/10.4028/www.scientific.net/amr.685.57

Sonowal, D., Sarma, D., Barua, P. B., Nath, T. (2017). Taguchi Optimization of Cutting Parameters in Turning AISI 1020 MS with M2 HSS Tool. IOP Conference Series: Materials Science and Engineering, 225, 012186. doi: https://doi.org/10.1088/1757-899x/225/1/012186

Aswal, A., Jha, A., Tiwari, A., Modi, Y. (2019). CNC Turning Parameter Optimization for Surface Roughness of Aluminium-2014 Alloy Using Taguchi Methodology. Journal Européen Des Systèmes Automatisés, 52 (4), 387–390. doi: https://doi.org/10.18280/jesa.520408

Özdemir, M. (2019). Optimization with Taguchi Method of Influences on Surface Roughness of Cutting Parameters in CNC Turning Processing. Mechanics, 25 (5), 397–405. doi: https://doi.org/10.5755/j01.mech.25.5.23005

Qureshi, A., Sorte, M., Teli, S. N. (2015). Optimization of Cutting parameters for Surface roughness in CNC turning of P20 steel. International Journal of Scientific & Engineering Research, 6 (12), 133–138.

Nas, E., Altan Özbek, N. (2019). Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools. Surface Review and Letters, 27 (05), 1950177. doi: https://doi.org/10.1142/s0218625x19501774

Gupta, M., Kumar, S. (2013). Multi-objective optimization of cutting parameters in turning using grey relational analysis. International Journal of Industrial Engineering Computations, 4 (4), 547–558. doi: https://doi.org/10.5267/j.ijiec.2013.06.001

Madhavi, S., Sreeramulu, D., Venkatesh, M. (2016). Optimization of turning process parameters by using grey-Taguchi. International Journal of Engineering, Science and Technology, 7 (4), 1. doi: https://doi.org/10.4314/ijest.v7i4.1

Puh, F., Jurkovic, Z., Perinic, M., Brezocnik, M., Buljan, S. (2016). Optimization of machining parameters for turning operation with multiple quality characteristics using Grey relational analysis. Tehnički vjesnik, 23 (2), 377–382. doi: https://doi.org/10.17559/tv-20150526131717

Singh, R., Dureja, J. S., Dogra, M., Randhawa, J. S. (2019). Optimization of machining parameters under MQL turning of Ti-6Al-4V alloy with textured tool using multi-attribute decision-making methods. World Journal of Engineering, 16 (5), 648–659. doi: https://doi.org/10.1108/wje-06-2019-0170

Mallampati, M., Das, V. C. (2012). Optimization Of Cutting Parameters As Speed, Feed & Depth Of Cut Based On Surface Roughness In Turning Process Using Genetic Algorithm (Ga) And Particle Swarm Optimization (Pso). International Journal of Engineering Research & Technology, 1 (7), 1–11.

Zavadskas, E. K., Antucheviciene, J., Chatterjee, P. (Eds.) (2019). Multiple-Criteria Decision-Making (MCDM) Techniques for Business Processes Information Management. MPDI, 320. doi: https://doi.org/10.3390/books978-3-03897-643-1

Triantaphyllou, E. (2000). Multi-criteria Decision Making Methods: A Comparative Study. Springer, 290. doi: https://doi.org/10.1007/978-1-4757-3157-6

Brauers, W. K. (2004). Optimization methods for a stakeholder society. A revolution in economic thinking by multi-objective optimization. Springer, 342. doi: https://doi.org/10.1007/978-1-4419-9178-2


👁 68
⬇ 50
Published
2021-03-29
How to Cite
Trung, D. D., Nguyen, N.-T., & Van Duc, D. (2021). STUDY ON MULTI-OBJECTIVE OPTIMIZATION OF THE TURNING PROCESS OF EN 10503 STEEL BY COMBINATION OF TAGUCHI METHOD AND MOORA TECHNIQUE. EUREKA: Physics and Engineering, (2), 52-65. https://doi.org/10.21303/2461-4262.2020.001414
Section
Engineering