The effect of milling time on the alumina phase transformation in the AMCs powder metallurgy reinforced by silica-sand-tailings

Keywords: mechanical alloying, milling time, powder metallurgy, AMCs, silica sand tailings, alumina


This study aims to determine the effect of milling time and sintering temperature parameters on the alumina transformation phase in the manufacture of Aluminium Matrix Composites (AMCs) reinforced by 20 % silica sand tailings using powder metallurgy technology. The matrix and fillers use waste to make the composites more efficient, clean the environment, and increase waste utilization. The milling time applied to the Mechanical Alloying (MA) process was 0.5, 6, 24, 48, and 96 hours, with a ball parameter ratio of 15:1 and a rotation of 93 rpm. Furthermore, hot compaction was carried out using a 100 MPa two-way hydraulic compression machine at a temperature of 300 °C for 20 minutes. The temperature variables of the sintering parameter process were 550, 600 to 650 °C, with a holding time of 10 minutes. Characterization of materials carried out included testing particle size, porosity, X-Ray Diffraction (XRD), SEM-Image, and SEM-EDX. The particle measurement of mechanical alloying processed, using Particle Size Analyzer (PSA) instrument and based on XRD data using the Scherrer equation, showed a relatively similar trend, decreasing particle size occurs when milling time was increased 0.5 to 24 hours. However, when the milling time increases to 48 and 96 hours, the particle size tends to increase slightly, due to cold-weld and agglomeration when the Mechanical Alloying is processed. The impact is the occurrence of the matrix and filler particle pairs in the cold-weld state. So, the results of XRD and SEM-EDX characterization showed a second phase transformation to form alumina compounds at a relatively low sintering temperature of 600 °C after the mechanical alloying process was carried out with a milling time on least 24 hours


Download data is not yet available.

Author Biographies

Sukanto, Politeknik Manufaktur Negeri Bangka Belitung; Brawijaya University

Department of Mechanical Engineering

Wahyono Suprapto, Brawijaya University

Department of Mechanical Engineering

Rudy Soenoko, Brawijaya University

Department of Mechanical Engineering

Yudy Surya Irawan, Brawijaya University

Department of Mechanical Engineering


Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., Gupta, P. (2019). Advance research progresses in aluminium matrix composites: manufacturing & applications. Journal of Materials Research and Technology, 8 (5), 4924–4939. doi:

Ceschini, L., Dahle, A., Gupta, M., Jarfors, A. E. W., Jayalakshmi, S., Morri, A. et. al. (2017). Mechanical Behavior of Al and Mg Based Nanocomposites. Engineering Materials, 95–137. doi:

Vu Viet, Q., Thu, T. V. T., Duong, N. N., Ngoc, B. D., Duc, H. T. (2020). Research on the manufacturing magnesium from thanhhoa dolomite by pidgeon process. EUREKA: Physics and Engineering, 6, 97–107. doi:

Chaubey, A., Konda Gokuldoss, P., Wang, Z., Scudino, S., Mukhopadhyay, N., Eckert, J. (2016). Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles. Technologies, 4 (4), 37. doi:

Allazadeh, M. R., Balazsi, C. (2013). Reinforced Aluminum Matrix Composite Application in Friction Material. Recent Patents on Corrosion Science, 3 (1), 39–46. doi:

Schmidt, A., Siebeck, S., Götze, U., Wagner, G., Nestler, D. (2018). Particle-Reinforced Aluminum Matrix Composites (AMCs) – Selected Results of an Integrated Technology, User, and Market Analysis and Forecast. Metals, 8 (2), 143. doi:

El-Eskandarany, M. S. (2015). The history and necessity of mechanical alloying. Mechanical Alloying, 13–47. doi:

Jamal, N. A., Farazila, Y., Ramesh, S., Anuar, H. (2014). Role of mechanical alloying parameters on powder distribution of Al/Cu alloy and Al/Cu composite. Materials Research Innovations, 18, S6-190–S6-195. doi:

Suryanarayana, C. (2019). Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials. Research, 2019, 1–17. doi:

Nová, K., Novák, P., Průša, F., Kopeček, J., Čech, J. (2018). Synthesis of Intermetallics in Fe-Al-Si System by Mechanical Alloying. Metals, 9 (1), 20. doi:

Suñol, J.-J. (2021). Mechanical Alloying: Processing and Materials. Metals, 11 (5), 798. doi:

Koch, C. C., Scattergood, R. O., Youssef, K. M., Chan, E., Zhu, Y. T. (2010). Nanostructured materials by mechanical alloying: new results on property enhancement. Journal of Materials Science, 45 (17), 4725–4732. doi:

Martinez Ruiz, M., Rivera Olvera, J. N., Morales Davila, R., González Reyes, L., Garibay Febles, V., Garcia Martinez, J., Diaz Barriga Arceo, L. G. (2020). Synthesis and Characterization of Mechanically Alloyed, Nanostructured Cubic MoW Carbide. Applied Sciences, 10 (24), 9114. doi:

Caballero, E., Cuevas, F., Ternero, F., Astacio, R., Montes, J., Cintas, J. (2018). In Situ Synthesis of Al-Based MMCs Reinforced with AlN by Mechanical Alloying under NH3 Gas. Materials, 11 (5), 823. doi:

Balcı, Ö., Prashanth, K., Scudino, S., Ağaoğulları, D., Duman, İ., Öveçoğlu, M. et. al. (2015). Effect of Milling Time and the Consolidation Process on the Properties of Al Matrix Composites Reinforced with Fe-Based Glassy Particles. Metals, 5 (2), 669–685. doi:

Suryanarayana, C., An, I.-S. (2006). Mechanical Alloying and Milling. Journal of Korean Powder Metallurgy Institute, 13 (5), 371–372. doi:

Yu, P., Deng, C.-J., Ma, N.-G., Ng, D. H. L. (2004). A new method of producing uniformly distributed alumina particles in Al-based metal matrix composite. Materials Letters, 58 (5), 679–682. doi:

Woo, K. D., Lee, H. B. (2007). Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder. Materials Science and Engineering: A, 449-451, 829–832. doi:

Karbasi, M., Razavi, M., Taheri, M., Vashaee, D., Tayebi, L. (2013). Preparation of Al-SiC-Al2O3 metal matrix composite powder by mechanochemical reaction between Al, SiO2 and C. Micro & Nano Letters, 8 (9), 519–522. doi:

Böer, K. W., Pohl, U. W. (2015). Crystal Defects. Semiconductor Physics, 1–51. doi:

Suezawa, M., Iijima, Y., Yonenaga, I. (2017). On the nature of thermal equilibrium point defects in Si: Are the thermal equilibrium point defects in Si crystals Frenkel pairs or Schottky defects? Japanese Journal of Applied Physics, 56 (4), 048005. doi:

Casati, R., Vedani, M. (2014). Metal Matrix Composites Reinforced by Nano-Particles – A Review. Metals, 4 (1), 65–83. doi:

Armstrong, R. (2019). Dislocation Mechanics Pile-Up and Thermal Activation Roles in Metal Plasticity and Fracturing. Metals, 9 (2), 154. doi:

Fogagnolo, J. B., Ruiz-Navas, E. M., Robert, M. H., Torralba, J. M. (2003). The effects of mechanical alloying on the compressibility of aluminium matrix composite powder. Materials Science and Engineering: A, 355 (1-2), 50–55. doi:

Azarniya, A., Azarniya, A., Abdollah‐zadeh, A., Madaah Hosseini, H. R., Ramakrishna, S. (2019). In Situ Hybrid Aluminum Matrix Composites: A Review of Phase Transformations and Mechanical Aspects. Advanced Engineering Materials, 21 (7), 1801269. doi:

Fuad, A., Mufti, N., Diantoro, M. et. al. (2016). Synthesis and characterization of highly purified nanosilica from pyrophyllite ores. AIP Conference Proceedings. doi:

Brough, D., Jouhara, H. (2020). The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermofluids, 1-2, 100007. doi:

Sukanto, Soenoko, R., Suprapto, W., Irawan, Y. S. (2020). Characterization of aluminium matrix composite of Al-ZnSiFeCuMg alloy reinforced with silica sand tailings particles. Journal of Mechanical Engineering and Sciences, 14 (3), 7094–7108. doi:

Sivakumar, S., Teow, H. L., Singh, R., Niakan, A., Mase, N. (2016). The Effect of Iron Oxide on the Mechanical and Ageing Properties of Y-TZP Ceramic. Key Engineering Materials, 701, 225–229. doi:

Huo, S. H., Qian, M., Schaffer, G. B., Crossin, E. (2011). Aluminium powder metallurgy. Fundamentals of Aluminium Metallurgy, 655–701. doi:

Zuhailawati, H., Samayamutthirian, P., Mohd Haizu, C. H. (2007). Fabrication of low cost of aluminium matrix composite reinforced with silica sand. Journal of Physical Science, 18 (1), 47–55. Available at:

Mohan, S., Gautam, G., Kumar, N., Gautam, R. K., Mohan, A., Jaiswal, A. K. (2016). Dry sliding wear behavior of Al-SiO2 composites. Composite Interfaces, 23 (6), 493–502. doi:

Munasir, Triwikantoro, Zainuri, M., Bäßler, R., Darminto (2019). Mechanical strength and corrosion rate of aluminium composites (Al/SiO2): Nanoparticle silica (NPS) as reinforcement. Journal of Physical Science, 30 (1), 81–97. doi:

Sukanto, Soenoko, R., Suprapto, W., Irawan, Y. S. (2019). Parameter Optimization of Ball Milling Process for Silica Sand Tailing. IOP Conference Series: Materials Science and Engineering, 494, 012073. doi:

Ubenthiran, S., Thanihaichelvan, M., Singh, R. (2018). Effect of Air and Argon Sintering Atmospheres on Properties and Hydrothermal Aging Resistance of Y-TZP Ceramics. Journal of Materials Engineering and Performance, 27 (7), 3574–3580. doi:

Wahyudie, I. A., Soenoko, R., Suprapto, W., Irawan, Y. S. (2020). Enhancing hardness and wear resistance of ZrSiO4-SnO2/Cu10Sn composite produced by warm compaction and sintering. Metalurgija, 59 (1), 27–30. Available at:

Tian, T., Hao, Z., Li, X., Jia, C., Peng, S., Zhu, Q., Ge, C. (2020). Influence of aging treatment on microstructure and properties of a novel spray formed powder metallurgy superalloy FGH100L. Journal of Alloys and Compounds, 830, 154699. doi:

Huo, H., Woo, K. D. (2006). In situ synthesis of Al2O3 particulate-reinforced Al matrix composite by low temperature sintering. Journal of Materials Science, 41 (11), 3249–3253. doi:

ASTM International - ASTM B962-13. Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. Available at:

Hargreaves, J. S. J. (2016). Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catalysis, Structure & Reactivity, 2 (1-4), 33–37. doi:

Horikoshi, S., Serpone, N. (2013). Introduction to Nanoparticles. Microwaves in Nanoparticle Synthesis, 1–24. doi:

Muniz, F. T. L., Miranda, M. A. R., Morilla dos Santos, C., Sasaki, J. M. (2016). The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A Foundations and Advances, 72 (3), 385–390. doi:

Wang, J. (2008). Mechanical alloying of amorphous Al–SiO2 powders. Journal of Alloys and Compounds, 456 (1-2), 139–142. doi:

👁 31
⬇ 19
How to Cite
Sukanto, Suprapto, W., Soenoko, R., & Irawan, Y. S. (2022). The effect of milling time on the alumina phase transformation in the AMCs powder metallurgy reinforced by silica-sand-tailings. EUREKA: Physics and Engineering, (1), 103-117.