Experimental study of the effect of brake drum cooling grooves on motorcycle braking performance
Abstract
Some important indicators in the braking system performance on a motorcycle are the braking temperature and stopping distance. High temperatures due to frictional heat in the drum brake can decrease the braking force and cause a slip. To improve braking performance, an effective strategy is needed to reduce the drum temperature and shorten the stopping distance. This study aims to analyze the effect of cooling grooves on the standard brake drum to decrease the drum brake temperature and the length of stopping distance. The measurements were compared to the standard drum brake as a reference, and two types of the modified ones to increase the braking performance by adding the slant-grooved and a straight grooved on brake drum. Braking is performed by providing a compressive load of two kg on the brake pedal for three cases of motorbike speed: 20, 40, and 60 km/hour. The results show that the brake drum with straight cooling grooves provides better braking performance compared to other drum brakes. For a speed of 60 km/h, the temperature of the straight grooved brake is 3.5 ºC. The stopping distance is 29.1 % shorter compared to the standard one. It shows that adding cooling grooves on drum brake can increase the effectiveness of motorcycle braking performance at various speeds. The results show that the brake drum with straight cooling grooves provides better braking performance compared to other drum brakes
Downloads
References
Watson, P. M. F., Lander, F. T. W., Miles, J. (1976). Motorcycle Braking. Institute of Electrical Engineers International Conference - on Automobile Electronics. London.
Fridayanti, V. D., Prasetyanto, D. (2019). Model Hubungan antara Angka Korban Kecelakaan Lalu Lintas dan Faktor Penyebab Kecelakaan pada Jalan Tol Purbaleunyi. (Hal. 124-132). RekaRacana: Jurnal Teknil Sipil, 5 (2), 124. doi: https://doi.org/10.26760/rekaracana.v5i2.123
Wibowo, D. B., Haryanto, I. (2015). Kegagalan fungsi pengereman bis dan truk akibat rusaknya komponen rakitan kampas rem. ROTASI, 17 (1), 19. doi: https://doi.org/10.14710/rotasi.17.1.19-28
Herawati, H. (2019). Karakteristik Dan Penyebab Kecelakaan Lalu Lintas Di Indonesia Tahun 2012. Warta Penelitian Perhubungan, 26 (3), 133. doi: https://doi.org/10.25104/warlit.v26i3.875
Peraturan Pemerinta Republik Indonesia Nomor 44 Tahun 1993 Tentang Kendaraan dan Pengemudi. Available at: https://peraturan.bpk.go.id/Home/Details/57553/pp-no-44-tahun-1993
Khairnar, H. P., Phalle, V. M., Mantha, S. S. (2016). Comparative Frictional Analysis of Automobile Drum and Disc Brakes. Tribology in Industry, 38 (1), 11–23. Available at: https://www.researchgate.net/publication/300942309_Comparative_Frictional_Analysis_of_Automobile_Drum_and_Disc_Brakes
Singh, U. P., Jain, A. K. (2018). Design and analysis of drum brake by fea: A Review. International Journal for Research Trends and Innovation, 3 (6), 53–56. Available at: https://www.ijrti.org/papers/IJRTI1806009.pdf
Huang, Y. M., Shyr, J. S. (1999). On Pressure Distributions of Drum Brakes. Journal of Mechanical Design, 124 (1), 115–120. doi: https://doi.org/10.1115/1.1427694
Manoj kumar, M., Suresh, R. K. (2018). Design and Optimization of Drum Brake System for Heavy Vehicles. International Research Journal of Automotive Technology, 1 (5), 41–45.
Shi, S. (2016). Automobile brake system. Available at: https://www.theseus.fi/bitstream/handle/10024/111425/Shi%20Shenshen%20Thesis%20AUTOMOBILE%20BRAKE%20SYSTEM.pdf?sequence=1
Ramesh, A., Sundar, S. (2019). Analysis of drum brake defects as a source of automotive vibro-acoustics. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering. Available at: http://www.sea-acustica.es/fileadmin/INTERNOISE_2019/Fchrs/Proceedings/1987.pdf
Day, A. J., Tirovic, M., Newcomb, T. P. (1991). Thermal Effects and Pressure Distributions in Brakes. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 205 (3), 199–205. doi: https://doi.org/10.1243/pime_proc_1991_205_171_02
Day, A. J. (1991). Drum Brake Interface Pressure Distributions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 205 (2), 127–136. doi: https://doi.org/10.1243/pime_proc_1991_205_161_02
Jaenudin, Jamari, J., Tauviqirrahman, M. (2017). Thermal analysis of disc brakes using finite element method. doi: https://doi.org/10.1063/1.4968281
Rachmadi, D. T. (2016). Kajian unjuk kerja sistem pengereman depan dengan cakram dan belakang dengan tromol pada sepeda motor gas wisanggeni. Institut Teknologi Sepuluh. Available at: https://repository.its.ac.id/227/
Singh, O. P., Mohan, S., Venkata Mangaraju, K., Jayamathy, M., Babu, R. (2010). Thermal seizures in automotive drum brakes. Engineering Failure Analysis, 17 (5), 1155–1172. doi: https://doi.org/10.1016/j.engfailanal.2010.02.001
Naji, M., Al-Nimr, M. (2001). Dynamic thermal behavior of a brake system. International Communications in Heat and Mass Transfer, 28 (6), 835–845. doi: https://doi.org/10.1016/s0735-1933(01)00287-1
García-León, R. A., Quintero-Quintero, W., Rodriguez-Castilla, M. (2019). Thermal analysis of three motorcycle disc brakes. Smart and Sustainable Built Environment, 9 (2), 208–226. doi: https://doi.org/10.1108/sasbe-07-2019-0098
Nemade, A. W., Telang, S. A., Chel, A. L. (2018). Effect of Heat Conduction on Friction Pad Life in Disk Braking System. International Journal of Applied Engineering Research, 13 (5), 1–4. Available at: https://www.ripublication.com/ijaerspl2018/ijaerv13n5spl_01.pdf
Bhat, R., Lee, K. S. (2017). Optimization of the Brake parameter for A Disc Brake System to improve the Heat Dissipation using Taguchi method. International Journal of Mechanical Engineering and Technology, 8 (7), 44–52. Available at: https://www.researchgate.net/publication/318440458_Optimization_of_the_Brake_Parameter_for_a_Disc_Brake_System_to_Improve_the_Heat_Dissipation_using_Taguchi_Method
Wibowo, D. B., Haryanto, I., Laksono, N. P. (2016). Indonesian commercial bus drum brake system temperature model. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4943478
Li, B. (2016). Three Dimensional Stress Field Analysis of Brake Shoe for Locomotives during Braking Process. Recent Patents on Mechanical Engineering, 9 (1), 48–56. doi: https://doi.org/10.2174/2212797609666151207195709
Sunday, B., Aminu, U., Yahaya, P. O., Ndaliman, M. B. (2015). Development and analysis of finned brake drum model using solidworks simulation. International Journal of Innovative Research in Science, Engineering and Technology. Available at: https://www.researchgate.net/publication/280025625_Development_and_Analysis_of_Finned_Brake_Drum_Model_Using_Solidworks_Simulation
Gowthami, K., Balaji, K. (2016). Designing And Analysis Of Brake Drum. International Journal For Research In Applied Science & Engineering Technology, 4 (IX), 135–142.
Jariwala, A. B., Kevadiya, J. J. (2019). Analysis of Drum Brake Review Article. International Research Journal of Engineering and Technology (IRJET), 06 (05), 7990–7993. Available at: https://www.academia.edu/40116635/IRJET-_Analysis_of_Drum_Brake_Review_Article
Prayoga, B. D., Poernomo, H., Bisono, F. (2017). Perancangan Dan Analisis Sistem Pengereman Hydraulic Pada Mobil Minimalis Roda Tiga. In: Proceedings Conference on Design Manufacture Engineering and its Application, 094–104. Available at: https://core.ac.uk/download/pdf/236670656.pdf
Ariffin, A. H., Hamzah, A, Solah, M. S. et. al. (2017). Comparative Analysis of Motorcycle Braking Performance in Emergency Situation. Journal of the Society of Automotive Engineers Malaysia, 1 (2), 137–145. Available at: https://www.researchgate.net/publication/317313427_Comparative_Analysis_of_Motorcycle_Braking_Performance_in_Emergency_Situation
Panduan Jarak Aman Kendaraan Menurut Polisi. Kompas.com. Available at: https://otomotif.kompas.com/read/2016/08/03/172300915/Panduan.Jarak.Aman.Kendaraan.Menurut.Polisi
Broen, N. L., Chiang, D. P. (1996). Braking Response Times for 100 Drivers in the Avoidance of an Unexpected Obstacle as Measured in a Driving Simulator. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 40 (18), 900–904. doi: https://doi.org/10.1177/154193129604001807
Muklis, M. (2013). Pengaruh penggunaan velg 17 inchi terhadap jarak dan waktu pengereman pada sepeda motor Honda Beat. Automotive Engineering Education Journals, 2 (5). Available at: http://ejournal.unp.ac.id/students/index.php/poto/article/view/766
Li, G. (2018). The Design of the Automobile Brake Cooling System. OALib, 05 (04), 1–10. doi: https://doi.org/10.4236/oalib.1104567
Osenin, Y. Y., Sosnov, I. I., Sergienko, O. V., Chesnokov, A. V., Osenin, Y. I., Al-Makhdi, D. M. (2016). Increase in the coefficient of friction of the rolling stock disc brake via fluid cooling of its friction elements. Journal of Friction and Wear, 37 (6), 523–528. doi: https://doi.org/10.3103/s106836661606012x
Wagino, W., Pratama, A. B., Fernandez, D. (2017). Pengaruh penggunaan kampas rem beralur terhadap jarak pengereman dan temperatur rem tromol pada sepeda motor Honda Fit S. VANOS Journal of Mechanical Engineering Education, 1 (2), 189–200. Available at: https://jurnal.untirta.ac.id/index.php/vanos/article/view/1020/817
Lapisa, R., Syahputra, H., Basri, I. Y., Rifdarmon, Saputra, H. D. (2017). An experimental study on the effect of centrifugal clutch cooling groove on motorcycle performance. 4th International Conference on Technical and Vocation Education and Training Padang. Available at: http://repository.unp.ac.id/18030/1/80.%20RemonLapisa%2C%20HendikaSyahputra%2C%20Irma%20Yulia%20Basri%2C%20Rifdarmon%20and%20Hendra%20Dani%20Saputra.pdf
Zurin, W. M. W. S., Talib, R. J., Ismail, N. I. (2017). Thermal analysis on motorcycle disc brake geometry. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4998393
Towoju, O. A. (2019). Braking Pattern Impact on Brake Fade in an Automobile Brake System. Journal of Engineering Sciences, 2, e11–e16. doi: https://doi.org/10.21272/jes.2019.6(2).e2
Corno, M., Savaresi, S. M., Tanelli, M., Fabbri, L. (2008). On optimal motorcycle braking. Control Engineering Practice, 16 (6), 644–657. doi: https://doi.org/10.1016/j.conengprac.2007.08.001
SNI 4404 : 2008. Metoda pengereman kendaraan bermotor kategori L. Available at: https://pesta.bsn.go.id/produk/detail/7747-sni44042008
Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 111 Tahun 2015 Tentang Tata Cara Penetapan Batas Kecepatan. Available at: https://www.regulasip.id/book/7780/read
Waduh! Kecepatan Kendaraan di Jakarta Rata-rata Hanya 20 Km/jam. Available at: https://news.detik.com/berita/d-1556306/waduh-kecepatan-kendaraan-di-jakarta-rata-rata-hanya-20-kmjam
Kusuma, A., Maulina, D., Hutami, A. M. (2019). Analysis of speed and social-psychology factors of speeding behaviour on drivers in dki Jakarta. Journal of Indonesia Road Safety, 2 (3), 133. doi: https://doi.org/10.19184/korlantas-jirs.v2i3.15022
Copyright (c) 2022 Remon Lapisa, Donny Fernandez, Claudio Tarihoran, Milana Milana, Ahmad Arif, Purwantono Purwantono, Jasman Jasman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.