Development of empirical mode decomposition based neural network for power quality disturbances classification

Keywords: Power Quality, EMD, Hilbert Transformation, statistical parameters, Neural Networks, Accuracy

Abstract

The complexity of the electric power network causes a lot of distortion, such as a decrease in power quality (PQ) in the form of voltage variations, harmonics, and frequency fluctuations. Monitoring the distortion source is important to ensure the availability of clean and quality electric power. Therefore, this study aims to classify power quality using a neural network with empirical mode decomposition-based feature extraction. The proposed method consists of 2 main steps, namely feature extraction, and classification. Empirical Mode Decomposition (EMD) was also applied to categorize the PQ disturbances into several intrinsic mode functions (IMF) components, which were extracted using statistical parameters and the Hilbert transformation. The statistical parameters consist of mean, root mean squared, range, standard deviation, kurtosis, crest factor, energy, and skewness, while the Hilbert transformation consists of instantaneous frequency and amplitude. The feature extraction results from both parameters were combined into a set of PQ disturbances and classified using Multi-Layer Feedforward Neural Networks (MLFNN). Training and testing were carried out on 3 feature datasets, namely statistical parameters, Hilbert transforms, and a combination of both as inputs from 3 different MLFNN architectures. The best results were obtained from the combined feature input on the network architecture with 2 layers of ten neurons, by 98.4 %, 97.75, and 97.4 % for precision, recall, and overall accuracy, respectively. The implemented method is used to classify PQ signals reliably for pure sinusoids, harmonics with sag and swell, as well as flicker with 100 % precision

Downloads

Download data is not yet available.

Author Biographies

Faqih Rofii, Universitas Brawijaya Malang, Universitas Widyagama Malang

Departement of Physics

Departement of Electrical Engineering

Agus Naba, Universitas Brawijaya Malang

Departement of Physics

Hari Arief Dharmawan, Universitas Brawijaya Malang

Departement of Physics

Fachrudin Hunaini, Universitas Widyagama Malang

Departement of Electrical Engineering

References

Muhamad, M. I., Mariun, N., Radzi, M. A. M. (2007). The Effects of Power Quality to the Industries. 2007 5th Student Conference on Research and Development. doi: https://doi.org/10.1109/scored.2007.4451410

Ruksana, S. K., Singh, S. K., Goswami, A. K., Sinha, N. (2018). Recent Challenges for Power Quality Impacts on Grid Integrated Wind Energy System: A Review. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). doi: https://doi.org/10.1109/iccons.2018.8662990

Thapar, A., Saha, T. K., Zhao Yang Dong. (2004). Investigation of power quality categorisation and simulating it~s impact on sensitive electronic equipment. IEEE Power Engineering Society General Meeting, 2004. doi: https://doi.org/10.1109/pes.2004.1372855

Jana, J., Saha, H., Das Bhattacharya, K. (2017). A review of inverter topologies for single-phase grid-connected photovoltaic systems. Renewable and Sustainable Energy Reviews, 72, 1256–1270. doi: https://doi.org/10.1016/j.rser.2016.10.049

Goh, H. S., Armstrong, M., Zahawi, B. (2009). The effect of grid operating conditions on the current controller performance of grid connected photovoltaic inverters. 2009 13th European Conference on Power Electronics and Applications, 1–8. Available at: https://ieeexplore.ieee.org/document/5279106

Liang, X. (2017). Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications, 53 (2), 855–866. doi: https://doi.org/10.1109/tia.2016.2626253

Bollen, M., Zhong, J., Zavoda, F. et. al. (2010). Power quality aspects of smart grids. RE&PQJ, 1 (8), 1061–1066. doi: https://doi.org/10.24084/repqj08.583

Amaripadath, D., Roche, R., Joseph-Auguste, L., Istrate, D., Fortune, D., Braun, J. P., Gao, F. (2017). Power quality disturbances on smart grids: Overview and grid measurement configurations. 2017 52nd International Universities Power Engineering Conference (UPEC). doi: https://doi.org/10.1109/upec.2017.8231975

Bollen, M. H. J., Das, R., Djokic, S., Ciufo, P., Meyer, J., Ronnberg, S. K., Zavodam, F. (2017). Power Quality Concerns in Implementing Smart Distribution-Grid Applications. IEEE Transactions on Smart Grid, 8 (1), 391–399. doi: https://doi.org/10.1109/tsg.2016.2596788

Granados-Lieberman, D., Romero-Troncoso, R. J., Osornio-Rios, R. A., Garcia-Perez, A., Cabal-Yepez, E. (2011). Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review. IET Generation, Transmission & Distribution, 5 (4), 519. doi: https://doi.org/10.1049/iet-gtd.2010.0466

Bollen, M. H. J. (2003). What is power quality? Electric Power Systems Research, 66 (1), 5–14. doi: https://doi.org/10.1016/s0378-7796(03)00067-1

Saini, M. K., Kapoor, R. (2012). Classification of power quality events – A review. International Journal of Electrical Power & Energy Systems, 43 (1), 11–19. doi: https://doi.org/10.1016/j.ijepes.2012.04.045

Understanding power quality problems: voltage sags and interruptions (2000). Choice Reviews Online, 37 (08), 37-4522–37-4522. doi: https://doi.org/10.5860/choice.37-4522

Emanuel, A. E. (2004). Summary of IEEE Standard 1459: Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. IEEE Transactions on Industry Applications, 40 (3), 869–876. doi: https://doi.org/10.1109/tia.2004.827452

Deokar, S. A., Waghmare, L. M. (2014). Integrated DWT–FFT approach for detection and classification of power quality disturbances. International Journal of Electrical Power & Energy Systems, 61, 594–605. doi: https://doi.org/10.1016/j.ijepes.2014.04.015

Decanini, J. G. M. S., Tonelli-Neto, M. S., Malange, F. C. V., Minussi, C. R. (2011). Detection and classification of voltage disturbances using a Fuzzy-ARTMAP-wavelet network. Electric Power Systems Research, 81 (12), 2057–2065. doi: https://doi.org/10.1016/j.epsr.2011.07.018

Naderian, S., Salemnia, A. (2016). An implementation of type-2 fuzzy kernel based support vector machine algorithm for power quality events classification. International Transactions on Electrical Energy Systems, 27 (5), e2303. doi: https://doi.org/10.1002/etep.2303

Lazzaretti, A. E., Ferreira, V. H., Neto, H. V. (2016). New Trends in Power Quality Event Analysis: Novelty Detection and Unsupervised Classification. Journal of Control, Automation and Electrical Systems, 27 (6), 718–727. doi: https://doi.org/10.1007/s40313-016-0265-z

Borges, F. A. S., Fernandes, R. A. S., Silva, I. N., Silva, C. B. S. (2016). Feature Extraction and Power Quality Disturbances Classification Using Smart Meters Signals. IEEE Transactions on Industrial Informatics, 12 (2), 824–833. doi: https://doi.org/10.1109/tii.2015.2486379

Shukla, S., Mishra, S., Singh, B. (2009). Empirical-Mode Decomposition With Hilbert Transform for Power-Quality Assessment. IEEE Transactions on Power Delivery, 24 (4), 2159–2165. doi: https://doi.org/10.1109/tpwrd.2009.2028792

Gu, I. Y.-H., Styvaktakis, E. (2003). Bridge the gap: signal processing for power quality applications. Electric Power Systems Research, 66 (1), 83–96. doi: https://doi.org/10.1016/s0378-7796(03)00074-9

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q. et. al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454 (1971), 903–995. doi: https://doi.org/10.1098/rspa.1998.0193

Rofii, F., Naba, A., Dharmawan, H. A., Hunaini, F. (2020). Analysis of Electrical Power Quality Disturbances Based on Empirical Mode Decomposition and Statistical Parameters. IOP Conference Series: Materials Science and Engineering, 846 (1), 012050. doi: https://doi.org/10.1088/1757-899x/846/1/012050

Chattopadhyay, S., Mitra, M., Sengupta, S. (2011). Electric Power Quality. Electric Power Quality, 5–12. doi: https://doi.org/10.1007/978-94-007-0635-4_2

IEEE Recommended Practice for Monitoring Electric Power Quality. doi: https://doi.org/10.1109/ieeestd.2019.8796486

IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. doi: https://doi.org/10.1109/ieeestd.2010.5439063

Igual, R., Medrano, C., Arcega, F. J., Mantescu, G. (2018). Integral mathematical model of power quality disturbances. 2018 18th International Conference on Harmonics and Quality of Power (ICHQP). doi: https://doi.org/10.1109/ichqp.2018.8378902

Durak, L., Arikan, O. (2003). Short-time fourier transform: two fundamental properties and an optimal implementation. IEEE Transactions on Signal Processing, 51 (5), 1231–1242. doi: https://doi.org/10.1109/tsp.2003.810293

Svozil, D., Kvasnicka, V., Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39 (1), 43–62. doi: https://doi.org/10.1016/s0169-7439(97)00061-0

Kliment, T., Markovič, J., Šmigura, D., Adam, P. (2019). Diagnosis of the Accuracy of the Vehicle Scale Using Neural Network. Measurement Science Review, 19 (1), 14–19. doi: https://doi.org/10.2478/msr-2019-0003

Rostami, A., Anbaz, M. A., Erfani Gahrooei, H. R., Arabloo, M., Bahadori, A. (2018). Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm. Egyptian Journal of Petroleum, 27 (1), 65–73. doi: https://doi.org/10.1016/j.ejpe.2017.01.003

Kouziokas, G. N., Chatzigeorgiou, A., Perakis, K. (2018). Multilayer Feed Forward Models in Groundwater Level Forecasting Using Meteorological Data in Public Management. Water Resources Management, 32 (15), 5041–5052. doi: https://doi.org/10.1007/s11269-018-2126-y

Kanirajan, P., Suresh Kumar, V. (2015). Power quality disturbance detection and classification using wavelet and RBFNN. Applied Soft Computing, 35, 470–481. doi: https://doi.org/10.1016/j.asoc.2015.05.048

Adnan, J., Daud, N. G. N., Ishak, M. T., Rizman, Z. I., Rahman, M. I. A. (2018). Tansig activation function (of MLP network) for cardiac abnormality detection. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.5022900

Shuqing, G., Yucong, S. (2021). Traffic sign recognition based on HOG feature extraction. Journal of Measurements in Engineering, 9 (3), 142–155. doi: https://doi.org/10.21595/jme.2021.22022

Olivia Florencias-Oliveros, M. J. Espinosa-Gavira, Juan-José González de la Rosa, A. Agüera-Pérez, José Carlos Palomares-Salas, J. M. Sierra-Fernández. (2017). Real-life Power Quality Sags. IEEE Dataport. doi: https://doi.org/10.21227/H2K88D


👁 252
⬇ 225
Published
2022-03-31
How to Cite
Rofii, F., Naba, A., Dharmawan, H. A., & Hunaini, F. (2022). Development of empirical mode decomposition based neural network for power quality disturbances classification. EUREKA: Physics and Engineering, (2), 28-44. https://doi.org/10.21303/2461-4262.2022.002046
Section
Energy