RECYCLING OF CARBONE OXIDES (CO, CO2) CONVERSION INTO METHANOL AT ATMOSPHERIC PRESSURE OVER MECHANOCHEMICAL ACHTIVATED CuO-ZnO-Al2O3 CATALYST

  • Nataliia Khimach Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
  • Vitaly Yevdokymenko Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
  • Ievgen Polunkin Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
Keywords: heterogeneous catalysis, copper-zinc-aluminum oxide catalyst mechanochemical activation, synthesis gas, methanol

Abstract

The catalytic process for methanol production by synthesis gas conversion under the conditions of mechanochemical activation (MCA) of copper-zinc-aluminum oxide catalyst in the temperature range 160–280 °C at a pressure of 0.1 MPa are investigated. The use of mechanical action force is one of the promising ways to improve the activity of heterogeneous catalysts designed to simplify the manufacturing process lines, improving the efficiency of catalytic processes and reduce the cost of the target product. Given the importance of technology for methanol production on copper-zinc-aluminum oxide catalysts and high demand for methanol in the world [1–3], clarification of the peculiarities of the process of methanol production by synthesis gas conversion in terms of mechanical load on the catalyst is important in scientific and applied ways.

It is established that specific catalytic activity, performance of methanol synthesis catalyst and the conversion of initial reagents are increased in the conditions of mechanochemical activation, because of the increasing concentration of defects and formation of additional active centers. It is revealed that mechanochemical treatment of copper-zinc-aluminum oxide catalyst can reduce reaction initiation temperature and optimum temperature synthesis by 20–30 °C, and increase the maximum performance of the catalytic system.

Increase of the catalyst activity under mechanical stress is explored by increase of defect concentration of crystal lattice of the catalyst, as confirmed by the tests of catalyst surface structure by scanning electron microscopy, Raman spectroscopy and X-ray analysis.

A new effective method for synthesis gas conversion into the methanol under conditions of mechanochemical activation of the catalyst can be used in industry as an alternative to methanol production at high pressures.

Downloads

Download data is not yet available.

Author Biographies

Nataliia Khimach, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine

Department of Homogeneous Catalysis and Additives to Oil Products

Vitaly Yevdokymenko, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine

Department of Organic and Petrochemical Synthesis

Ievgen Polunkin, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine

Department of Homogeneous Catalysis and Additives to Oil Products

References

Olah, G. A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44 (18), 2636–2639. doi: 10.1002/anie.200462121

Koempel, H., Liebner, W. (2007). Lurgi's Methanol To Propylene (MTP®) Report on a successful commercialization. Studies in Surface Science and Catalysis, 167, 261–267. doi:10.1016/s0167-2991(07)80142-x

Mirnyj, M. (2016). Metanol 2016 – itogi otraslevoj konferencii. Available at: http://mplast.by/novosti/2016-07-06-metanol-2016-itogi-otraslevoy-konferentsii/

Ekbom, T., Lindblom, M., Berglin, N., Ahlvik, P. (2003). Technical and Commercial Feasibility Study of Black Liquor Gasification with Methanol/DME Production as Motor Fuels for Automotive Uses – BLGMF. Sweden, 248. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi: 10.1.1.468.6163&rep=rep1&type=pdf

Koempel, H., Liebner, W., Wagner, M. (2005). Lurgi’s Gas To Chemicals (GTC®): Advanced technologies for natural gas monetisation. Gas-to-Liquids, Methanol, DME, CNG and Alternatives, Spain, 10.

Rodin, L. M., Ovsienko, O. L., Kakichev, L. P. (2001). Experience operating a methanol synthesis catalyst SLM-U. Сhemical Industry, 10, 3–8.

Kryilov, O. V. (2004). Geterogennyiy kataliz. Moscow: Akademkniga.

Olah, G. A., Goeppert, A., Prakash, G. K. S. (2009). Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. The Journal of Organic Chemistry, 74 (2), 487–498. doi: 10.1021/jo801260f

Litvin, N. S., Halamejda, S. V., Zazhigalov, V. A. (2010). Vliyanie mekhanohimicheskoj obrabotki na svojstva MoO3. Dopovidi Nacional'noi akademii nauk Ukraini, 9, 108–113.

Boldyrev, V. V. (2006). Mekhanohimiya i mekhanicheskaya aktivaciya tverdyh veshchestv. Uspekhi himii, 75 (3), 203–216.

Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J. M., Wieczorek-Ciurowa, K. (2013). Hallmarks of mechanochemistry: from nanoparticles to technology. Chemical Society Reviews, 42 (18), 7571. doi: 10.1039/c3cs35468g

Molchanov, V. V., Buyanov, R. A., Cybulya, S. V., Kryukova G. N., Shmakov, A. N., Boronin, A. I., Volodin, A. M. (2004). Priroda vliyaniya mekhanohimicheskoj aktivacii na kataliticheskie svojstva oksida cinka. Kinetika i kataliz, 45 (5), 724–733.

Boldyrev, V. V. (2006). Mechanochemistry and mechanical activation of solids. Russian Chemical Reviews, 75 (3), 177–189. doi: 10.1070/rc2006v075n03abeh001205

Avvakumov, E. G. (2009). Fundamental Bases of Mechanical Activation, Mechanosynthesis and Mechanochemical Technologies. Novosibirsk publishing house of the Siberian branch of the Russian Academy of Sciences.

Buyanov, R. A., Molchanov, V. V., Boldyrev, V. V. (2009). Mechanochemical Activation for Resolving the Problems of Catalysis. KONA Powder and Particle Journal, 27, 38–54. doi: 10.14356/kona.2009007

Gusev, A. I. (2007). Nanomaterialy, nanostruktury, nanotekhnologii., Moscow: Fizmatlit, 414.

Khimach, N. Y., Polunkin, I. V., Filonenko, M. M., Melnykova, S. L. (2016). Activation of a catalyst of the methanol synthesis by a mechanical effect. Reports of the National Academy of Sciences of Ukraine, 3, 86–92. doi: 10.15407/dopovidi2016.03.086

Khimach, N. Yu., Polunkin, Ye. V., Mel'nykova, S. L. (2015). Mechanoactivation of copper-zinc-aluminium industrial catalyst of methanol synthesis. Chemical industry of Ukraine, 2, 45–50.

Vlasov, A. I., Elsukov, K. A. Kosolapov, I. A. (2011). Elektronnaya mikroskopiya. Moscow: Izdatel'stvo MGTU im. N. EH. Baumana, 168.

Trushin, V. N., Andreev, P. V. Faddeev, M. A. (2012). Rentgenovskij fazovyj analiz polikristallicheskih materialov. Nizhnij Novgorod: Nizhegorodskij gosuniversite, 123.

Bykov, Yu. A., Karpuhin, S. D., Bojchenko, M. K. (2003). Rastrovaya ehlektronnaya mikroskopiya i rentgenospektral'nyj analiz. Apparatura, princip raboty, primenenie. Moscow: Izdatel'stvo MGTU im. N. EH. Baumana, 30.

Zuo, Z.-J., Wang, L., Liu, Y.-J., Huang, W. (2013). The effect of CuO–ZnO–Al2O3 catalyst structure on the ethanol synthesis from syngas. Catalysis Communications, 34, 69–72. doi: 10.1016/j.catcom.2013.01.008

Sene, A., Jalowieckiduhamel, L., Wrobel, G., Bonnelle, J. P. (1993). Hydrogen Species, Vacancies, and Alkadiene Hydrogenation Selectivity on Copper-Based Hydrogen Reservoirs. Journal of Catalysis, 144 (2), 544–555. doi:10.1006/jcat.1993.1352

Behrens, M., Studt, F., Kasatkin, I., Kuhl, S., Havecker, M., Abild-Pedersen, F., Schlogl, R. (2012). The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts. Science, 336 (6083), 893–897. doi:10.1126/science.1219831

Tomaszewski, W., Charmas, B. Skubiszewska-Zieba, J. (2016). Solid phase extraction of explosives on Ni-doped carbosils prepared by mechanochemistry. XV Ukrainian–Polish Symposium on Theoretical and Experimental Studies of Interface Phenomena and their Technological Applications simultaneously with Second Nanobiomat Conference – Nanostructured Biocompatible/Bioactive Materials, 11–17.


👁 708
⬇ 235
Published
2016-11-29
How to Cite
Khimach, N., Yevdokymenko, V., & Polunkin, I. (2016). RECYCLING OF CARBONE OXIDES (CO, CO2) CONVERSION INTO METHANOL AT ATMOSPHERIC PRESSURE OVER MECHANOCHEMICAL ACHTIVATED CuO-ZnO-Al2O3 CATALYST. EUREKA: Physics and Engineering, (6), 11-18. https://doi.org/10.21303/2461-4262.2016.00210
Section
Chemical Engineering