Analysis of frequency dependence of complex impedance and electrical characterization of Fe2O3/kaolin ceramics for civil engineering applications

Keywords: Electrical conductivity, Semiconductors, Kaolin, Fe2O3, Impedance Spectroscopy

Abstract

The complex impedance spectroscopy (CIS) method is usually used in order to analyze the electrical response of different semiconducting disordered materials as a function of frequency at different temperatures. The real and imaginary parts of the complex impedance can show different semicircles in the complex plane that give evidence for the presence of both bulk and grain boundary contributions. Many parameters can be deduced from the analysis of CIS data, such as relaxation times and activation energies. There are some literature data concerning electrical properties of clays and (semiconductor, sand, cement,…)/clay mixtures. Most of the published works are related to the AC conductivity of rocks with the effect of water or oil content but there are no similar studies on the characterization of the microstructure of individual clays as ceramic materials by analyzing their temperature and frequency dependence of their electrical conductivities. Hence, this paper presents an analysis of electric complex impedance of the Fe2O3/Kaolin composite in the high temperature range up to 740 °C. Sinusoidal voltage with frequency in the range [100 Hz, 1 MHz] is applied to the material in order to measure the electrical conductivity for various concentrations of Fe2O3 from zero to 100 %. The activation energies for the conduction and for the relaxation processes are determined and their dependence on the density of Fe2O3 analyzed. Furthermore, let’s found that Fe2O3 have the effect to increase the electrical conductivity in our samples. From the Nyquist diagrams, only one semi-circle related to the contribution of the grains to the total electrical conduction is identified for all investigated samples.

Downloads

Download data is not yet available.

Author Biographies

Abdeltif Bouchehma, Sultan Moulay Slimane university

Research Laboratory of Physics and Engineers Sciences

Team of Applied Physics and New Technologies

Mohamed Essaleh, Cadi-Ayyad university

Geosciences, Geonvironnement and Civil Engineering Laboratory

Rachid Bouferra, Cadi-Ayyad university

Geosciences, Geonvironnement and Civil Engineering Laboratory

Soufiane Belhouideg, Sultan Moulay Slimane university

Research Laboratory of Physics and Engineers Sciences

Team of Applied Physics and New Technologies

Mohamed Benjelloun, Cadi-Ayyad university

Geosciences, Geonvironnement and Civil Engineering Laboratory

Imad Sfa, High National School of Mines of Rabat

Valorisation of Resources, Environment and Sustainable Development

References

Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 39–49. doi: http://doi.org/10.1180/000985599546055

Bergaya, F., Lagaly, G.; Bergaya, F. et. al. (Eds.) (2006). Clays, Clay Minerals, and Clay Science, Developments in Clay Science. Handbook of clay science. Amsterdam: Elsevier. doi: http://doi.org/10.1016/s1572-4352(05)01001-9

Konta, J. (1995). Clay and man: clay raw materials in the service of man. Applied Clay Science, 10 (4), 275–335. doi: http://doi.org/10.1016/0169-1317(95)00029-4

Harvey, C. C., Murray, H. H. (1997). Industrial clays in the 21st century: A perspective of exploration, technology and utilization. Applied Clay Science, 11 (5-6), 285–310. doi: https://doi.org/10.1016/S0169-1317(96)00028-2

Wei, L., Zhongyi, F., Jun, W., Qing, H., Hang, D., Xiaojuan, Z., Zhi, Z. (2021). Study on the reusability of kaolin as catalysts for catalytic pyrolysis of low-density polyethylene. Fuel, 302, 121164. doi: https://doi.org/10.1016/j.fuel.2021.121164

Xinbin, L., Xiaoyang, X., Weihui, J., Jian, L., Lifeng, M., Qian, W. (2020). Influences of impurities and mineralogical structure of different kaolin minerals on thermal properties of cordierite ceramics for high-temperature thermal storage. Applied Clay Science, 187, 105485. doi: https://doi.org/10.1016/j.clay.2020.105485

Murray, H. H. (1991). Overview – clay mineral applications. Applied Clay Science, 5 (5-6), 379–395. doi: https://doi.org/10.1016/0169-1317(91)90014-Z

Ababneh, A., Matalkah, F., Matalkeh, B. (2002). Effects of kaolin characteristics on the mechanical properties of alkali-activated binders. Construction and Building Materials, 318, 126020. doi: https://doi.org/10.1016/j.conbuildmat.2021.126020

Vesely, D. Kalendova A., Victor Manso, M. (2012). Properties of calcined kaolins in anticorrosion paints depending on PVC, chemical composition and shape of particles. Progress in Organic Coatings, 74 (1), 82–91. doi: https://doi.org/10.1016/j.porgcoat.2011.11.017

Jamil, N. H., Abdullah, M. M. AB., Pa, F. C., Mohamad, H., Ibrahim, W. M., Chaiprapa, J. (2020). Influences of SiO2, Al2O3, CaO and MgO in phase transformation of sintered kaolin-ground granulated blast furnace slag geopolymer. Journal of Materials Research and Technology, 9 (6), 14922–14932. doi: https://doi.org/10.1016/j.jmrt.2020.10.045

Özcan, A., Özcan, A. A., Demirci, Y., Şener, E. (2017). Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Applied Catalysis B: Environmenta, 200, 361–371. doi: https://doi.org/10.1016/j.apcatb.2016.07.018

Piva, D. H., Piva, J., Venturini, J., Ramon, J., Caldas, V., Morelli, M. R., Bergmann, C. P. (2016). Effect of Fe2O3 content on the electrical resistivity of aluminous porcelain applied to electrical insulators. Ceramics International, 42 (4) 5045–5052. doi: https://doi.org/10.1016/j.ceramint.2015.12.016

de Lima, O. A. L., Sharma, M. N. (1992). A generalized Maxwell‐Wagner theory for membrane polarization in shaly sands. Geophys, 57 (3), 431. doi: https://doi.org/10.1190/1.1443257

Piva, R. H. Vilarinho, P. MorelliM, M. R. Fiori, M. A. Montedo, O. R. K. (2013). Influence of Fe2O3 content on the dielectric behavior of aluminous porcelain insulators. Ceramics International, 39 (7), 7323–7330. doi: https://doi.org/10.1016/j.ceramint.2013.02.071

Bosman, A. J., Van Daal, H. J. (1970). Small-polaron versus band conduction in some transition-metal oxides. Advances in Physics, 19 (77), 1–117. doi: https://doi.org/10.1080/00018737000101071

Barsoukov, E., Macdonald, J. R. (2005). Impedance Spectroscopy: Theory, Experiment, and Applications. New York: Wiley. doi: https://doi.org/10.1002/0471716243

Elliot S. R. (1987). Temperature dependence of a.c. conductivity of chalcogenide glasses. Philosophical Magazine B, 37 (5), 553–560. doi: https://doi.org/10.1080/01418637808226448

Jonscher, A. K. (1992). Dielectric Relaxation in Solids. Journal of Physics D: Applied Physics, 32 (14), 57–70. doi: http://doi.org/10.1088/0022-3727/32/14/201

Bona, N., Rossi, E., Capaccioli, S. (2001). Electrical Measurements in the 100 Hz to 10 GHz Frequency Range for Efficient Rock Wettability Determination. SPE Journal 6 (01), 80–88. doi: https://doi.org/10.2118/69741-PA

Bouchehma, A., Essaleh, L., Marín, G., Essaleh, M., Wasim, S. M., Amhil, S. et. al. (2021). Physica B: Dielectric spectroscopy of n type Cu5In9Se16 semiconductor compound, Condensed Matter, 622, 413356. doi: https://doi.org/10.1016/j.physb.2021.413356

Bouferra, R., Marín, G., Amhil, S., Wasim, S., Essaleh, L. et. al. (2020). Electrical impedance spectroscopy characterization of n type Cu5In9Se16 semiconductor compound, Physica B: Condensed Matter, 593. doi: https://doi.org/10.1016/j.physb.2020.412283

Essaleh, L., Wasim, S. M., Marın, G., Rincon, C., Amhil, S., Galibert, J. (2017). Mott type variable range hopping conduction and magnetoresistance in p-type CuIn3Te5 semiconductor compound. Journal of Applied Physics 122. 015702. doi: https://doi.org/10.1063/1.4991004

Essaleh, L., Amhil, S., Wasim, S. M., Marín, G., Choukri, E. (2018). Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5. Physica E Low-dimensional Systems and Nanostructures, 99, 37–42. doi: https://doi.org/10.1016/j.physe.2018.01.012

Kirou, H., Atourkia, L., Essaleh, L., Taleb, A., Messous, M. Y., Bouabid, K., Nya, N., Ihlal, A. (2019). Towards phase pure Kesterite Cu2ZnSnS4 thin films via Cu-Zn-Sn electrodeposition under a variable applied potential. Journal of Alloys and Compounds, 783, 524–532. doi: https://doi.org/10.1016/j.jallcom.2018.12.269

Janek, M., Zich, D., Naftaly, M. (2014). Terahertz time-domain spectroscopy response of amines and amino acids intercalated smectites in far-infrared region. Materials Chemistry and Physics, 145, 278–287. doi: https://doi.org/10.1016/j.matchemphys.2014.02.004

Imaginary (Z″) versus real (Z′) parts of the complex impedance (Z) for all samples at a given temperature of 700 °C

👁 73
⬇ 92
Published
2022-09-30
How to Cite
Bouchehma, A., Essaleh, M., Bouferra, R., Belhouideg, S., Benjelloun, M., & Sfa, I. (2022). Analysis of frequency dependence of complex impedance and electrical characterization of Fe2O3/kaolin ceramics for civil engineering applications. EUREKA: Physics and Engineering, (5), 175-183. https://doi.org/10.21303/2461-4262.2022.002312
Section
Material Science