Iris recognition method based on segmentation

Keywords: Biometric Recognition System, Iris, Segmentation Technique, Hough transform, Dataset, accuracy


The development of science and studies has led to the creation of many modern means and technologies that focused and directed their interests on enhancing security due to the increased need for high degrees of security and protection for individuals and societies. Hence identification using a person's vital characteristics is an important privacy topic for governments, businesses and individuals. A lot of biometric features such as fingerprint, facial measurements, acid, palm, gait, fingernails and iris have been studied and used among all the biometrics, in particular, the iris gets the attention because it has unique advantages as the iris pattern is unique and does not change over time, providing the required accuracy and stability in verification systems. This feature is impossible to modify without risk. When identifying with the iris of the eye, the discrimination system only needs to compare the data of the characteristics of the iris of the person to be tested to determine the individual's identity, so the iris is extracted only from the images taken. Determining correct iris segmentation methods is the most important stage in the verification system, including determining the limbic boundaries of the iris and pupil, whether there is an effect of eyelids and shadows, and not exaggerating centralization that reduces the effectiveness of the iris recognition system. There are many techniques for subtracting the iris from the captured image. This paper presents the architecture of biometric systems that use iris to distinguish people and a recent survey of iris segmentation methods used in recent research, discusses methods and algorithms used for this purpose, presents datasets and the accuracy of each method, and compares the performance of each method used in previous studies


Download data is not yet available.

Author Biographies

Ans Ibrahim Mahameed, University of Al-Hamdaniya

Department of Computer Science

Mohammed Kassim Ahmed, University of Al-Hamdaniya

Master of Communication and Networking Engineering

Department of Computer Science

Noor Basim Abdullah, University of Al-Hamdaniya

Master of Systems Software

Department of Computer Science


Buciu, I., Gacsadi, A. (2016). Biometrics Systems and Technologies: A survey. International Journal of Computers Communications & Control, 11 (3), 315. doi:

Al-Rahawe, E. A. M., Humbe, T. V., Shinde, G. N. (2019). An Analysis on Biometric Traits Recognition. International Journal of Innovative Technology and Exploring Engineering, 8 (7). Available at:

Alsaadi, I. (2015). Physiological Biometric Authentication Systems, Advantages, Disadvantages And Future Development: A Review. International Journal of Scientific & Technology Research, 4 (12), 285–289. Available at:

Winston, J. J., Hemanth, D. J. (2019). A comprehensive review on iris image-based biometric system. Soft Computing, 23 (19), 9361–9384. doi:

Majeed, M. M. F., Adisaputera, A., Ridwan, M. (2020). Digital Identity. Konfrontasi: Jurnal Kultural, Ekonomi Dan Perubahan Sosial, 7 (4), 246–252. doi:

Ashraf, A., Vats, I. (2017). The Survey of Architecture of Multi-Modal (Fingerprint and Iris Recognition) Biometric Authentication System. International Journal of Engineering Research and Applications, 07 (04), 16–25. doi:

Viriri, S., Tapamo, J. (2017). Iris pattern recognition based on cumulative sums and majority vote methods. International Journal of Advanced Robotic Systems, 14 (3), 172988141770393. doi:

Patil, B. G., Mane, N. N., Subbaraman, S. (2011). IRIS Feature Extraction and Classification using FPGA. International Journal of Electrical and Computer Engineering (IJECE), 2 (2). doi:

Ashwini, M. B., Imran, M., Alsaade, F. (2015). Evaluation of Iris Recognition System on Multiple Feature Extraction Algorithms and its Combinations. International Journal of Computer Applications Technology and Research, 4 (8), 592–598. doi:

Sruthi, T. K., Jini, K. M. (2013). A Literature Review on Iris Segmentation Techniques for Iris Recognition Systems. IOSR Journal of Computer Engineering, 11 (1), 46–50. doi:

Choudhary, M., Tiwari, V., Venkanna, U. (2019). Enhancing human iris recognition performance in unconstrained environment using ensemble of convolutional and residual deep neural network models. Soft Computing, 24 (15), 11477–11491. doi:

Alhamrouni, M. (2017). Iris recognition by using image processing techniques. Atilim University. doi:

Abdullah, M. A. M., Dlay, S. S., Woo, W. L., Chambers, J. A. (2017). Robust Iris Segmentation Method Based on a New Active Contour Force With a Noncircular Normalization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47 (12), 3128–3141. doi:

Paulín-Martínez, F. J., Lara-Guevara, A., Romero-González, R. M., Jiménez-Hernández, H. (2019). Implementation of the Hough Transform for Iris Detection and Segmentation. Advances in Molecular Imaging, 09 (01), 6–18. doi:

Rana, H. K., Azam, S., Akhtar, R., Quinn, J. M. W., Moni, M. A. (2019). A fast iris recognition system through optimum feature extraction. PeerJ Computer Science, 5, e184. doi:

Rajab, Z. (2016). Efficient methods of iris recognition. International Educational Scientific Research Journal [IESRJ], 2 (6), 7–8. Available at:

Hashemi, H., Pakzad, R., Yekta, A., Hasani, J., Asharlous, A., Ostadimoghaddam, H. et. al. (2019). Iris Color Distribution and Its Relation with Refractive Errors, Amblyopia, and Strabismus in Children. Journal of Comprehensive Pediatrics, 10 (3). doi:

Ramamurthy, M., Lakshminarayanan, V. (2017). Human Vision and Perception. Handbook of Advanced Lighting Technology, 757–784. doi:

Trokielewicz, M., Czajka, A., Maciejewicz, P. (2018). Iris Recognition in Cases of Eye Pathology. Series in BioEngineering, 41–69. doi:

Lucio, D. R., Laroca, R., Zanlorensi, L. A., Moreira, G., Menotti, D. (2019). Simultaneous Iris and Periocular Region Detection Using Coarse Annotations. 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). doi:

H Hofbauer, H., Alonso-Fernandez, F., Wild, P., Bigun, J., Uhl, A. (2014). A Ground Truth for Iris Segmentation. 2014 22nd International Conference on Pattern Recognition. doi:

Bhawna, C., Shukla, S. (2011). Iris Recognition System using canny edge detection for Biometric Identification. International Journal of Engineering Science and Technology, 3 (1). Available at:

Tobji, R., Di, W., Ayoub, N. (2019). FMnet: Iris Segmentation and Recognition by Using Fully and Multi-Scale CNN for Biometric Security. Applied Sciences, 9 (10), 2042. doi:

Radman, A., Jumari, K., Zainal, N. (2013). Fast and reliable iris segmentation algorithm. IET Image Processing, 7 (1), 42–49. doi:

Donida Labati, R., Muñoz, E., Piuri, V., Ross, A., Scotti, F. (2019). Non-ideal iris segmentation using Polar Spline RANSAC and illumination compensation. Computer Vision and Image Understanding, 188, 102787. doi:

Larregui, J. I., Cazzato, D., Castro, S. M. (2019). An image processing pipeline to segment iris for unconstrained cow identification system. Open Computer Science, 9 (1), 145–159. doi:

Omidiora, E., Adegoke, B., Falohun, S., Ojo, J. (2015). Iris recognition systems: technical overview. IMPACT: International Journal of Research in Engineering & Technology, 3 (6), 63–72.

Nguyen, K., Fookes, C., Jillela, R., Sridharan, S., Ross, A. (2017). Long range iris recognition: A survey. Pattern Recognition, 72, 123–143. doi:

Liu, C.-C., Chung, P.-C., Lyu, C.-M., Liu, J., Yu, S.-S. (2014). A Novel Iris Segmentation Scheme. Mathematical Problems in Engineering, 2014, 1–14. doi:

Li, Y.-H., Huang, P.-J., Juan, Y. (2019). An Efficient and Robust Iris Segmentation Algorithm Using Deep Learning. Mobile Information Systems, 2019, 1–14. doi:

Abidin, Z., Manaf, M., Shibghatullah, A., Yunos, S. H., Anawar, S., Ayop, Z. (2012). Iris Segmentation Analysis using Integro-Differential Operator and Hough Transform in Biometric System. Journal of Telecommunication, Electronic and Computer Engineering, pp. 1-8, 01/01 2012. Available at:

He, Z., Sun, Z., Tan, T., Wei, Z. (2009). Efficient Iris Spoof Detection via Boosted Local Binary Patterns. Lecture Notes in Computer Science, 1080–1090. doi:

Abdelwahed, H., Hashim, A., Hasan, A. (2020). Segmentation Approach for a Noisy Iris Images Based on Hybrid Techniques. Engineering and Technology Journal, 38 (11), 1684–1691. doi:

Sutra, G., Garcia-Salicetti, S., Dorizzi, B. (2012). The Viterbi algorithm at different resolutions for enhanced iris segmentation. 2012 5th IAPR International Conference on Biometrics (ICB). doi:

Zhang, C., Zhang, Y., Shi, X., Almpanidis, G., Fan, G., Shen, X. (2019). On Incremental Learning for Gradient Boosting Decision Trees. Neural Processing Letters, 50 (1), 957–987. doi:

Haindl, M., Krupička, M. (2015). Unsupervised detection of non-iris occlusions. Pattern Recognition Letters, 57, 60–65. doi:

Radman, A., Zainal, N., Suandi, S. A. (2017). Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut. Digital Signal Processing, 64, 60–70. doi:

Ammour, B., Boubchir, L., Bouden, T., Ramdani, M. (2020). Face–Iris Multimodal Biometric Identification System. Electronics, 9 (1), 85. doi:

Jusman, Y., Ng, S. C., Hasikin, K. (2020). Performances of proposed normalization algorithm for iris recognition. International Journal of Advances in Intelligent Informatics, 6 (2), 161. doi:

Ezzaki, A., Idrissi, N., Moreno, F.-A., Masmoudi, L. (2020). Iris recognition algorithm based on Contourlet Transform and Entropy. Electronic Letters on Computer Vision and Image Analysis, 19 (1), 53–67. doi:

Ahmadi, N., Akbarizadeh, G. (2018). Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier. Neural Computing and Applications, 32 (7), 2267–2281. doi:

Okokpujie, K., Noma-Osaghae, E., John, S., Ajulibe, A. (2018). An Improved Iris Segmentation Technique Using Circular Hough Transform. Lecture Notes in Electrical Engineering, 203–211. doi:

Abed, M. H. (2017). Iris recognition model based on Principal Component analysis and 2 level Haar wavelet transform: Case study CUHK and UTIRIS iris databases, مجلة كلية التربية جامعة واس , 27, 485–500.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ Available at:

Sevugan, P., Swarnalatha, P., Gopu, M., Sundararajan, R. (2017). Iris recognition system. International Research Journal of Engineering and Technology, 4 (2), 864–868. Available at:

Elrefaei, L. A., Hamid, D. H., Bayazed, A. A., Bushnak, S. S., Maasher, S. Y. (2017). Developing Iris Recognition System for Smartphone Security. Multimedia Tools and Applications, 77 (12), 14579–14603. doi:

Aboshosha, A., A. El Dahshan, K., A. Karam, E., A. Ebeid, E. (2015). Score Level Fusion for Fingerprint, Iris and Face Biometrics. International Journal of Computer Applications, 111 (4), 47–55. doi:

Patil, S., N Raka, T., Sarode, S. O. (2014). Multimodal Biometric Identification System: Fusion of Iris and Fingerprint. International Journal of Computer Applications, 97 (9), 31–36. doi:

Hezil, N., Benzaoui, A., Abdelhani, B. (2013). Multimodal Biometric system using Iris and Fingerprint. The 2nd international Conference on Signal, Image, Vision and their Applications (SIVA 2013). Guelma. Available at:

Soltany, M., Zadeh, S. T., Pourreza, H. R. (2011). Daugman’s Algorithm Enhancement for Iris Localization. Advanced Materials Research, 403-408, 3959–3964. doi:

Daway, H. G., Kareem, H. H., Hashim, A. R. (2018). Pupil Detection Based on Color Difference and Circular Hough Transfor. International Journal of Electrical and Computer Engineering (IJECE), 8 (5), 3278. doi:

Trokielewicz, M. (2016). Iris recognition with a database of iris images obtained in visible light using smartphone camera. 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA). doi:

Al-Waisy, A. S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., Nagem, T. A. M. (2017). A multi-biometric iris recognition system based on a deep learning approach. Pattern Analysis and Applications, 21 (3), 783–802. doi:

Singh, G., Singh, R. K., Saha, R., Agarwal, N. (2020). IWT Based Iris Recognition for Image Authentication. Procedia Computer Science, 171, 1868–1876. doi:

Malgheet, J. R., Manshor, N. B., Affendey, L. S. (2021). Iris Recognition Development Techniques: A Comprehensive Review. Complexity, 2021, 1–32. doi:

👁 58
⬇ 67
How to Cite
Mahameed, A. I., Ahmed, M. K., & Abdullah, N. B. (2022). Iris recognition method based on segmentation. EUREKA: Physics and Engineering, (2), 166-176.
Computer Science