Iris recognition method based on segmentation
Abstract
The development of science and studies has led to the creation of many modern means and technologies that focused and directed their interests on enhancing security due to the increased need for high degrees of security and protection for individuals and societies. Hence identification using a person's vital characteristics is an important privacy topic for governments, businesses and individuals. A lot of biometric features such as fingerprint, facial measurements, acid, palm, gait, fingernails and iris have been studied and used among all the biometrics, in particular, the iris gets the attention because it has unique advantages as the iris pattern is unique and does not change over time, providing the required accuracy and stability in verification systems. This feature is impossible to modify without risk. When identifying with the iris of the eye, the discrimination system only needs to compare the data of the characteristics of the iris of the person to be tested to determine the individual's identity, so the iris is extracted only from the images taken. Determining correct iris segmentation methods is the most important stage in the verification system, including determining the limbic boundaries of the iris and pupil, whether there is an effect of eyelids and shadows, and not exaggerating centralization that reduces the effectiveness of the iris recognition system. There are many techniques for subtracting the iris from the captured image. This paper presents the architecture of biometric systems that use iris to distinguish people and a recent survey of iris segmentation methods used in recent research, discusses methods and algorithms used for this purpose, presents datasets and the accuracy of each method, and compares the performance of each method used in previous studies
Downloads
References
Buciu, I., Gacsadi, A. (2016). Biometrics Systems and Technologies: A survey. International Journal of Computers Communications & Control, 11 (3), 315. doi: https://doi.org/10.15837/ijccc.2016.3.2556
Al-Rahawe, E. A. M., Humbe, T. V., Shinde, G. N. (2019). An Analysis on Biometric Traits Recognition. International Journal of Innovative Technology and Exploring Engineering, 8 (7). Available at: https://www.researchgate.net/publication/342701277_An_Analysis_on_Biometric_Traits_Recognition
Alsaadi, I. (2015). Physiological Biometric Authentication Systems, Advantages, Disadvantages And Future Development: A Review. International Journal of Scientific & Technology Research, 4 (12), 285–289. Available at: https://www.ijstr.org/final-print/dec2015/Physiological-Biometric-Authentication-Systems-Advantages-Disadvantages-And-Future-Development-A-Review.pdf
Winston, J. J., Hemanth, D. J. (2019). A comprehensive review on iris image-based biometric system. Soft Computing, 23 (19), 9361–9384. doi: https://doi.org/10.1007/s00500-018-3497-y
Majeed, M. M. F., Adisaputera, A., Ridwan, M. (2020). Digital Identity. Konfrontasi: Jurnal Kultural, Ekonomi Dan Perubahan Sosial, 7 (4), 246–252. doi: https://doi.org/10.33258/konfrontasi2.v7i4.122
Ashraf, A., Vats, I. (2017). The Survey of Architecture of Multi-Modal (Fingerprint and Iris Recognition) Biometric Authentication System. International Journal of Engineering Research and Applications, 07 (04), 16–25. doi: https://doi.org/10.9790/9622-0704031625
Viriri, S., Tapamo, J. (2017). Iris pattern recognition based on cumulative sums and majority vote methods. International Journal of Advanced Robotic Systems, 14 (3), 172988141770393. doi: https://doi.org/10.1177/1729881417703931
Patil, B. G., Mane, N. N., Subbaraman, S. (2011). IRIS Feature Extraction and Classification using FPGA. International Journal of Electrical and Computer Engineering (IJECE), 2 (2). doi: https://doi.org/10.11591/ijece.v2i2.158
Ashwini, M. B., Imran, M., Alsaade, F. (2015). Evaluation of Iris Recognition System on Multiple Feature Extraction Algorithms and its Combinations. International Journal of Computer Applications Technology and Research, 4 (8), 592–598. doi: https://doi.org/10.7753/ijcatr0408.1002
Sruthi, T. K., Jini, K. M. (2013). A Literature Review on Iris Segmentation Techniques for Iris Recognition Systems. IOSR Journal of Computer Engineering, 11 (1), 46–50. doi: https://doi.org/10.9790/0661-1114650
Choudhary, M., Tiwari, V., Venkanna, U. (2019). Enhancing human iris recognition performance in unconstrained environment using ensemble of convolutional and residual deep neural network models. Soft Computing, 24 (15), 11477–11491. doi: https://doi.org/10.1007/s00500-019-04610-2
Alhamrouni, M. (2017). Iris recognition by using image processing techniques. Atilim University. doi: https://doi.org/10.13140/RG.2.2.28469.06885
Abdullah, M. A. M., Dlay, S. S., Woo, W. L., Chambers, J. A. (2017). Robust Iris Segmentation Method Based on a New Active Contour Force With a Noncircular Normalization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47 (12), 3128–3141. doi: https://doi.org/10.1109/tsmc.2016.2562500
Paulín-Martínez, F. J., Lara-Guevara, A., Romero-González, R. M., Jiménez-Hernández, H. (2019). Implementation of the Hough Transform for Iris Detection and Segmentation. Advances in Molecular Imaging, 09 (01), 6–18. doi: https://doi.org/10.4236/ami.2019.91002
Rana, H. K., Azam, S., Akhtar, R., Quinn, J. M. W., Moni, M. A. (2019). A fast iris recognition system through optimum feature extraction. PeerJ Computer Science, 5, e184. doi: https://doi.org/10.7717/peerj-cs.184
Rajab, Z. (2016). Efficient methods of iris recognition. International Educational Scientific Research Journal [IESRJ], 2 (6), 7–8. Available at: https://www.researchgate.net/publication/325541720_EFFICIENT_METHODS_OF_IRIS_RECOGNITION
Hashemi, H., Pakzad, R., Yekta, A., Hasani, J., Asharlous, A., Ostadimoghaddam, H. et. al. (2019). Iris Color Distribution and Its Relation with Refractive Errors, Amblyopia, and Strabismus in Children. Journal of Comprehensive Pediatrics, 10 (3). doi: https://doi.org/10.5812/compreped.66099
Ramamurthy, M., Lakshminarayanan, V. (2017). Human Vision and Perception. Handbook of Advanced Lighting Technology, 757–784. doi: https://doi.org/10.1007/978-3-319-00176-0_46
Trokielewicz, M., Czajka, A., Maciejewicz, P. (2018). Iris Recognition in Cases of Eye Pathology. Series in BioEngineering, 41–69. doi: https://doi.org/10.1007/978-981-13-1144-4_2
Lucio, D. R., Laroca, R., Zanlorensi, L. A., Moreira, G., Menotti, D. (2019). Simultaneous Iris and Periocular Region Detection Using Coarse Annotations. 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). doi: https://doi.org/10.1109/sibgrapi.2019.00032
H Hofbauer, H., Alonso-Fernandez, F., Wild, P., Bigun, J., Uhl, A. (2014). A Ground Truth for Iris Segmentation. 2014 22nd International Conference on Pattern Recognition. doi: https://doi.org/10.1109/icpr.2014.101
Bhawna, C., Shukla, S. (2011). Iris Recognition System using canny edge detection for Biometric Identification. International Journal of Engineering Science and Technology, 3 (1). Available at: https://www.researchgate.net/publication/50391992_Iris_Recognition_System_using_canny_edge_detection_for_Biometric_Identification
Tobji, R., Di, W., Ayoub, N. (2019). FMnet: Iris Segmentation and Recognition by Using Fully and Multi-Scale CNN for Biometric Security. Applied Sciences, 9 (10), 2042. doi: https://doi.org/10.3390/app9102042
Radman, A., Jumari, K., Zainal, N. (2013). Fast and reliable iris segmentation algorithm. IET Image Processing, 7 (1), 42–49. doi: https://doi.org/10.1049/iet-ipr.2012.0452
Donida Labati, R., Muñoz, E., Piuri, V., Ross, A., Scotti, F. (2019). Non-ideal iris segmentation using Polar Spline RANSAC and illumination compensation. Computer Vision and Image Understanding, 188, 102787. doi: https://doi.org/10.1016/j.cviu.2019.07.007
Larregui, J. I., Cazzato, D., Castro, S. M. (2019). An image processing pipeline to segment iris for unconstrained cow identification system. Open Computer Science, 9 (1), 145–159. doi: https://doi.org/10.1515/comp-2019-0010
Omidiora, E., Adegoke, B., Falohun, S., Ojo, J. (2015). Iris recognition systems: technical overview. IMPACT: International Journal of Research in Engineering & Technology, 3 (6), 63–72.
Nguyen, K., Fookes, C., Jillela, R., Sridharan, S., Ross, A. (2017). Long range iris recognition: A survey. Pattern Recognition, 72, 123–143. doi: https://doi.org/10.1016/j.patcog.2017.05.021
Liu, C.-C., Chung, P.-C., Lyu, C.-M., Liu, J., Yu, S.-S. (2014). A Novel Iris Segmentation Scheme. Mathematical Problems in Engineering, 2014, 1–14. doi: https://doi.org/10.1155/2014/684212
Li, Y.-H., Huang, P.-J., Juan, Y. (2019). An Efficient and Robust Iris Segmentation Algorithm Using Deep Learning. Mobile Information Systems, 2019, 1–14. doi: https://doi.org/10.1155/2019/4568929
Abidin, Z., Manaf, M., Shibghatullah, A., Yunos, S. H., Anawar, S., Ayop, Z. (2012). Iris Segmentation Analysis using Integro-Differential Operator and Hough Transform in Biometric System. Journal of Telecommunication, Electronic and Computer Engineering, pp. 1-8, 01/01 2012. Available at: http://eprints.utem.edu.my/id/eprint/13305/1/Iris_Segmentation_using_IDO_and_Hough_Transform_in_Biometric_System_Vol4_No2_06(41-48).pdf
He, Z., Sun, Z., Tan, T., Wei, Z. (2009). Efficient Iris Spoof Detection via Boosted Local Binary Patterns. Lecture Notes in Computer Science, 1080–1090. doi: https://doi.org/10.1007/978-3-642-01793-3_109
Abdelwahed, H., Hashim, A., Hasan, A. (2020). Segmentation Approach for a Noisy Iris Images Based on Hybrid Techniques. Engineering and Technology Journal, 38 (11), 1684–1691. doi: https://doi.org/10.30684/etj.v38i11a.450
Sutra, G., Garcia-Salicetti, S., Dorizzi, B. (2012). The Viterbi algorithm at different resolutions for enhanced iris segmentation. 2012 5th IAPR International Conference on Biometrics (ICB). doi: https://doi.org/10.1109/icb.2012.6199825
Zhang, C., Zhang, Y., Shi, X., Almpanidis, G., Fan, G., Shen, X. (2019). On Incremental Learning for Gradient Boosting Decision Trees. Neural Processing Letters, 50 (1), 957–987. doi: https://doi.org/10.1007/s11063-019-09999-3
Haindl, M., Krupička, M. (2015). Unsupervised detection of non-iris occlusions. Pattern Recognition Letters, 57, 60–65. doi: https://doi.org/10.1016/j.patrec.2015.02.012
Radman, A., Zainal, N., Suandi, S. A. (2017). Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut. Digital Signal Processing, 64, 60–70. doi: https://doi.org/10.1016/j.dsp.2017.02.003
Ammour, B., Boubchir, L., Bouden, T., Ramdani, M. (2020). Face–Iris Multimodal Biometric Identification System. Electronics, 9 (1), 85. doi: https://doi.org/10.3390/electronics9010085
Jusman, Y., Ng, S. C., Hasikin, K. (2020). Performances of proposed normalization algorithm for iris recognition. International Journal of Advances in Intelligent Informatics, 6 (2), 161. doi: https://doi.org/10.26555/ijain.v6i2.397
Ezzaki, A., Idrissi, N., Moreno, F.-A., Masmoudi, L. (2020). Iris recognition algorithm based on Contourlet Transform and Entropy. Electronic Letters on Computer Vision and Image Analysis, 19 (1), 53–67. doi: https://doi.org/10.5565/rev/elcvia.1190
Ahmadi, N., Akbarizadeh, G. (2018). Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier. Neural Computing and Applications, 32 (7), 2267–2281. doi: https://doi.org/10.1007/s00521-018-3754-0
Okokpujie, K., Noma-Osaghae, E., John, S., Ajulibe, A. (2018). An Improved Iris Segmentation Technique Using Circular Hough Transform. Lecture Notes in Electrical Engineering, 203–211. doi: https://doi.org/10.1007/978-981-10-6454-8_26
Abed, M. H. (2017). Iris recognition model based on Principal Component analysis and 2 level Haar wavelet transform: Case study CUHK and UTIRIS iris databases, مجلة كلية التربية جامعة واس , 27, 485–500. Available at: https://www.researchgate.net/publication/317640135_Iris_recognition_model_based_on_Principal_Component_analysis_and_2_level_Haar_wavelet_transform_Case_study_CUHK_and_UTIRIS_iris_databases
Sevugan, P., Swarnalatha, P., Gopu, M., Sundararajan, R. (2017). Iris recognition system. International Research Journal of Engineering and Technology, 4 (2), 864–868. Available at: https://www.researchgate.net/publication/322222447_IRIS_RECOGNITION_SYSTEM
Elrefaei, L. A., Hamid, D. H., Bayazed, A. A., Bushnak, S. S., Maasher, S. Y. (2017). Developing Iris Recognition System for Smartphone Security. Multimedia Tools and Applications, 77 (12), 14579–14603. doi: https://doi.org/10.1007/s11042-017-5049-3
Aboshosha, A., A. El Dahshan, K., A. Karam, E., A. Ebeid, E. (2015). Score Level Fusion for Fingerprint, Iris and Face Biometrics. International Journal of Computer Applications, 111 (4), 47–55. doi: https://doi.org/10.5120/19530-1171
Patil, S., N Raka, T., Sarode, S. O. (2014). Multimodal Biometric Identification System: Fusion of Iris and Fingerprint. International Journal of Computer Applications, 97 (9), 31–36. doi: https://doi.org/10.5120/17036-7337
Hezil, N., Benzaoui, A., Abdelhani, B. (2013). Multimodal Biometric system using Iris and Fingerprint. The 2nd international Conference on Signal, Image, Vision and their Applications (SIVA 2013). Guelma. Available at: https://www.researchgate.net/publication/267034310_Multimodal_Biometric_system_using_Iris_and_Fingerprint
Soltany, M., Zadeh, S. T., Pourreza, H. R. (2011). Daugman’s Algorithm Enhancement for Iris Localization. Advanced Materials Research, 403-408, 3959–3964. doi: https://doi.org/10.4028/www.scientific.net/amr.403-408.3959
Daway, H. G., Kareem, H. H., Hashim, A. R. (2018). Pupil Detection Based on Color Difference and Circular Hough Transfor. International Journal of Electrical and Computer Engineering (IJECE), 8 (5), 3278. doi: https://doi.org/10.11591/ijece.v8i5.pp3278-3284
Trokielewicz, M. (2016). Iris recognition with a database of iris images obtained in visible light using smartphone camera. 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA). doi: https://doi.org/10.1109/isba.2016.7477233
Al-Waisy, A. S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., Nagem, T. A. M. (2017). A multi-biometric iris recognition system based on a deep learning approach. Pattern Analysis and Applications, 21 (3), 783–802. doi: https://doi.org/10.1007/s10044-017-0656-1
Singh, G., Singh, R. K., Saha, R., Agarwal, N. (2020). IWT Based Iris Recognition for Image Authentication. Procedia Computer Science, 171, 1868–1876. doi: https://doi.org/10.1016/j.procs.2020.04.200
Malgheet, J. R., Manshor, N. B., Affendey, L. S. (2021). Iris Recognition Development Techniques: A Comprehensive Review. Complexity, 2021, 1–32. doi: https://doi.org/10.1155/2021/6641247
Copyright (c) 2022 Ans Ibrahim Mahameed, Mohammed Kassim Ahmed, Noor Basim Abdullah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.