Experimental study of the correlation for turbulent burning velocity at subatmospheric pressure

Keywords: progress variable, subatmospheric pressure, theoretical correlation, turbulent burning velocity


Turbulent burning velocity is one of the most relevant parameters to characterize the premixed turbulent flames. Different correlation has been proposed to estimate this parameter. However, most of them have been obtained using experimental data at atmospheric pressure or higher. The present study is focused on obtaining a correlation for the turbulent burning velocity using data at sub-atmospheric pressure. The turbulent burning velocity was experimentally calculated using the burner method, where turbulent premix flames are generated in a Bunsen burner. Stoichiometric and lean conditions were evaluated at a pressure of 0.85 atm and 0.98 atm, whereas the turbulence intensity was varied for each condition. Perforated plates and a hot-wire anemometer were used to generate and measure the turbulence intensity. Schlieren images were used to obtain the average angle of the flame and calculate the turbulent burning velocity. Experiments and theory show that the turbulent deflagration rate decrease as pressure decrease. The turbulent deflagration speed decreased by up to 16 % at 0.85 atm concerning atmospheric conditions for the same turbulence intensity, discharge velocity, and ambient temperature, according to the experimental results. The comparison among the experimental results at sub-atmospheric conditions and the correlations reported in the literature exposes prediction issues because most of them are fitted using data at atmospheric conditions. A general correlation is raised between turbulent burning velocity (ST), laminar burning velocity (SL) and turbulence intensity (u’) proposed from the experimental data. This correlation has the form  For sub-atmospheric and atmospheric conditions, the coefficients were determined


Download data is not yet available.

Author Biographies

Arley Cardona Vargas, Instituto Tecnológico Metropolitano

Department of Mechatronics Engineering

Advanced Materials and Energy Research Group – MATyER

Hernando Alexander Yepes Tumay, Universidad Francisco de Paula Santander Ocaña, Norte de Santander

Department of Mechanical Engineering

Research Group in New Technologies, Sustainability, and Innovation – GINSTI

Andrés Amell, Universidad de Antioquia

Department of Mechanical Engineering

Science and Technology of Gases and Rational Use of Energy Group – GASURE


Serrano, C., Hernández, J. J., Mandilas, C., Sheppard, C. G. W., Woolley, R. (2008). Laminar burning behaviour of biomass gasification-derived producer gas. International Journal of Hydrogen Energy, 33 (2), 851–862. doi: https://doi.org/10.1016/j.ijhydene.2007.10.050

Burbano, H. J., Pareja, J., Amell, A. A. (2011). Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2. International Journal of Hydrogen Energy, 36 (4), 3232–3242. doi: https://doi.org/10.1016/j.ijhydene.2010.11.089

Hernandez, J. J., Serrano, C., Perez, J. (2005). Prediction of the Autoignition Delay Time of Producer Gas from Biomass Gasification. Energy & Fuels, 20 (2), 532–539. doi: https://doi.org/10.1021/ef058025c

Bradley, D., Haq, M. Z., Hicks, R. A., Kitagawa, T., Lawes, M., Sheppard, C. G. W., Woolley, R. (2003). Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combustion and Flame, 133 (4), 415–430. doi: https://doi.org/10.1016/s0010-2180(03)00039-7

Kobayashi, H., Seyama, K., Hagiwara, H., Ogami, Y., Aldredge, R. (2005). Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proceedings of the Combustion Institute, 30 (1), 827–834. doi: https://doi.org/10.1016/j.proci.2004.08.098

Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F. A. (1996). Burning velocity of turbulent premixed flames in a high-pressure environment. Symposium (International) on Combustion, 26 (1), 389–396. doi: https://doi.org/10.1016/s0082-0784(96)80240-2

Kobayashi, H. (2002). Experimental study of high-pressure turbulent premixed flames. Experimental Thermal and Fluid Science, 26 (2-4), 375–387. doi: https://doi.org/10.1016/s0894-1777(02)00149-8

Burbano, H. J., Pareja, J., Amell, A. A. (2011). Laminar burning velocities and flame stability analysis of syngas mixtures at sub-atmospheric pressures. International Journal of Hydrogen Energy, 36 (4), 3243–3252. doi: https://doi.org/10.1016/j.ijhydene.2010.12.001

Burgess, D. (1962). Structure and propagation of turbulent bunsen flames. Washington: Office United States Goverment Printing.

Cardona, A., García, A., Cano, F., Arrieta, C. E., Yepes, H. A., Amell, A. (2019). Experimental study of turbulent syngas/methane/air flames at a sub-atmospheric condition. Journal of Physics: Conference Series, 1409 (1), 012012. doi: https://doi.org/10.1088/1742-6596/1409/1/012012

McAllister, S., Chen, J.-Y., Fernandez-Pello, A. C. (2011). Fundamentals of Combustion Processes. Springer, 304. doi: https://doi.org/10.1007/978-1-4419-7943-8

Shy, S. S., Lin, W. J., Wei, J. C. (2000). An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456 (2000), 1997–2019. doi: https://doi.org/10.1098/rspa.2000.0599

Turns, S. R. (2000). An Introduction to Combustion Concepts and Applications. Singapore: McGraw-Hill.

Kobayashi, H., Kawahata, T., Seyama, K., Fujimari, T., Kim, J.-S. (2002). Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames. Proceedings of the Combustion Institute, 29 (2), 1793–1800. doi: https://doi.org/10.1016/s1540-7489(02)80217-6

Kobayashi, H., Kawabata, Y., Maruta, K. (1998). Experimental study on general correlation of turbulent burning velocity at high pressure. Symposium (International) on Combustion, 27 (1), 941–948, 1998. doi: https://doi.org/10.1016/s0082-0784(98)80492-x

Rockwell, S. R. (2012). Influence of Coal Dust on Premixed Turbulent Methane–Air Flames. Worcester Polytechnic Institute, 263.

Rockwell, S. R., Rangwala, A. S. (2013). Influence of coal dust on premixed turbulent methane–air flames. Combustion and Flame, 160 (3), 635–640. doi: https://doi.org/10.1016/j.combustflame.2012.10.025

Zhang, M., Wang, J., Xie, Y., Jin, W., Wei, Z., Huang, Z., Kobayashi, H. (2013). Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. International Journal of Hydrogen Energy, 38 (26), 11421–11428. doi: https://doi.org/10.1016/j.ijhydene.2013.05.051

Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T. (1997). Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combustion and Flame, 108 (1-2), 104–117. doi: https://doi.org/10.1016/s0010-2180(96)00103-4

Gülder, Ö. L. (1991). Turbulent premixed flame propagation models for different combustion regimes. Symposium (International) on Combustion, 23 (1), 743–750. doi: https://doi.org/10.1016/s0082-0784(06)80325-5

Kobayashi, H., Kawazoe, H. (2000). Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proceedings of the Combustion Institute, 28 (1), 375–382. doi: https://doi.org/10.1016/s0082-0784(00)80233-7

Vargas, A. C., García, A. M., Arrieta, C. E., del Rio, J. S., Amell, A. (2020). Burning Velocity of Turbulent Methane/Air Premixed Flames in Subatmospheric Environments. ACS Omega, 5 (39), 25095–25103. doi: https://doi.org/10.1021/acsomega.0c02670

👁 34
⬇ 30
How to Cite
Vargas, A. C., Tumay, H. A. Y., & Amell, A. (2022). Experimental study of the correlation for turbulent burning velocity at subatmospheric pressure. EUREKA: Physics and Engineering, (4), 25-35. https://doi.org/10.21303/2461-4262.2022.002414

Most read articles by the same author(s)