Synthesize and characterization of artificial human bone developed by using nanocomposite

Keywords: Biocompatibility, artificial bone, Hydroxyapatite, biopolymers, bioceramics, cytotoxicity

Abstract

The combination of biopolymers with bioceramics plays vital role in development of artificial bone. Hydroxyapatite is extensively used as a material in prosthetic bone repair and replacement. In this paper synthesis of Hydroxyapatite- Polymethyl methacrylate – Zirconia (Hap-PMMA-ZrO2) composite by using powder metallurgy technique. The mechanical, morphological, In-vitro biocompatibility and tribological properties were characterized by universal testing machine, micro-vickers hardness tester, high resolution transmission electron microscope (HR-TEM), MTT assay and pin-on-disc setup. In-vitro cytotoxicity test on HeLa cell lines shows cell viability constant when doses concentration increases so material found non-toxic. Results show that micro Vickers hardness i.e. 520 approximately matches with natural human bone i.e. 400. Compressive strength is less as compared to human bone because of powder metallurgy route used for fabrication and is 74 MPa. Density of proposed composite artificial human bone i.e. 1.52 g/cc is less as compared to natural bone i.e. 2.90 g/cc. The Hap-PMMA-ZrO2 composite will be good biomaterials for bone repair and replacement work

Downloads

Download data is not yet available.

Author Biographies

Pham Van Dong, Hanoi University of Industry

Department of Science and Technology

Santosh R. Patil, Shivaji University, Kolhapur

Department of Mechanical Engineering

Rajarambapu Institute of Technology, Rajaramnagar

Shailesh S. Shirguppikar, Shivaji University, Kolhapur

Department of Mechanical Engineering

Rajarambapu Institute of Technology, Rajaramnagar

Do Ngoc Tu, Hanoi University of Industry

Department of Industry Tool and Equipment

Faculty of Mechanical Engineering

Nguyen Huu Phan, Hanoi University of Industry

Department of Industry Tool and Equipment

Faculty of Mechanical Engineering

Le Thi Phuong Thanh, Hanoi University of Industry

Department of Industry Tool and Equipment

Faculty of Mechanical Engineering

Ngo Ngoc Vu, Thai Nguyen University of Technology

Department of Mechatronics

Faculty of Mechanical Engineering

References

Deng, M., James, R., Laurencin, C. T., Kumbar, S. G. (2012). Nanostructured Polymeric Scaffolds for Orthopaedic Regenerative Engineering. IEEE Transactions on NanoBioscience, 11 (1), 3–14. doi: https://doi.org/10.1109/tnb.2011.2179554

Hench, L. L. (2005). Bioceramics. Journal of the American Ceramic Society, 81 (7), 1705–1728. doi: https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

Luo, D., Sang, L., Wang, X., Xu, S., Li, X. (2011). Low temperature, pH-triggered synthesis of collagen–chitosan–hydroxyapatite nanocomposites as potential bone grafting substitutes. Materials Letters, 65 (15-16), 2395–2397. doi: https://doi.org/10.1016/j.matlet.2011.05.011

De Groot, K., Klein, C. P. A. T., Wolke, J. G. C., de Blieck-Hogervorst, J. (1990). Chemistry of Calcium Phosphate Bioceramics. Handbook of Bioactive Ceramics, Vol. II. Calcium Phosphate and Hydroxylapatite Ceramics. Boca Raton, FL, 3–15.

Ding, S.-J., Chu, Y.-H., Wang, D.-Y. (2017). Enhanced properties of novel zirconia-based osteo-implant systems. Applied Materials Today, 9, 622–632. doi: https://doi.org/10.1016/j.apmt.2017.09.007

Tanaka, Y., Hirata, Y., Yoshinaka, R. (2003). Synthesis and Characteristics of Ultrafine Hydroxyapatite Particles. Journal of Ceramic Processing Research, 4 (4), 197–201. Available at: https://www.researchgate.net/publication/290822378_Synthesis_and_characteristics_of_ultrafine_hydroxyapatite_particles

Casati, R., Vedani, M. (2014). Metal Matrix Composites Reinforced by Nano-Particles – A Review. Metals, 4 (1), 65–83. doi: https://doi.org/10.3390/met4010065

Liu, W., Su, P., Gonzales, A., Wang, N., Zhang, Z., Li, H. et. al. (2015). Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling. International Journal of Nanomedicine, 1997. doi: https://doi.org/10.2147/ijn.s74418

Hetrick, E. M., Schoenfisch, M. H. (2006). Reducing implant-related infections: active release strategies. Chemical Society Reviews, 35 (9), 780. doi: https://doi.org/10.1039/b515219b

Labieniec, M., Gabryelak, T. (2003). Effects of tannins on Chinese hamster cell line B14. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 539 (1-2), 127–135. doi: https://doi.org/10.1016/s1383-5718(03)00161-x

Lapshina, E. A., Zavodnik, I. B., Labieniec, M., Rękawiecka, K., Bryszewska, M. (2005). Cytotoxic and genotoxic effects of tert-butyl hydroperoxide on Chinese hamster B14 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 583 (2), 189–197. doi: https://doi.org/10.1016/j.mrgentox.2005.03.005

Jin, Z., Dowson, D. (2013). Bio-friction. Friction, 1 (2), 100–113. doi: https://doi.org/10.1007/s40544-013-0004-4

Bandgar, S. S., Kolekar, T. V., Shirguppikar, S. S., Shinde, M. A., Shejawal, R. V., Bamane, S. R. (2017). Synthesis, characterization of silver doped hydroxyapatite nanoparticles for biomedical applications. Der Pharma Chemica, 9 (3), 78–84. Available at: https://www.derpharmachemica.com/pharma-chemica/synthesis-characterization-of-silver-doped-hydroxyapatite-nanoparticles-for-biomedical-applications.pdf


👁 36
⬇ 29
Published
2022-05-31
How to Cite
Dong, P. V., Patil, S. R., Shirguppikar, S. S., Tu, D. N., Phan, N. H., Thanh, L. T. P., & Vu, N. N. (2022). Synthesize and characterization of artificial human bone developed by using nanocomposite. EUREKA: Physics and Engineering, (3), 112-120. https://doi.org/10.21303/2461-4262.2022.002432
Section
Material Science