Theoretical approach for Fe(II/III) and its chlorophyll-related complexes as sensitizers in dye-sensitized solar cells

Keywords: Chlorophyll, DSSC, DFT, MLCT, d orbital, non-innocence ligand, ligand radical cation

Abstract

Dye is the key to the efficiency of harvesting solar energy in dye-sensitized solar cells (DSSCs). The dye performances such as light absorption, electron injection, and electron regeneration depend on the dye molecule structure. To predict it, one needs to compute the optimized molecule geometry, HOMO level, LUMO level, electron density distribution, energy gaps, and dipole moment in the ground and excited state. Chlorophyll-related chlorin and porphyrin, as well as their κ2O,O’ complexes with Fe(II/III), were investigated with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) computations using the B3LYP method and def2-TZVP basis set. NPA charges also were calculated to know the valence of the metal cations exactly. In general, the calculations show that the metal cations introduced occupied d orbitals with lower oxidation potentials than the chlorophyll ligand orbitals, which are responsible for the emergence of additional absorption bands. The states result in effective band broadening and the redshift of spectrum absorbance that is expected to improve DSSC performance.

Another requirement that has to be possessed is the ability of electron regeneration, electron injection, and dipole moment. The Fe(II) complex has fulfilled these requirements, but not the Fe(III) complex due to having a low electron injection capability. However, this work has shown that Fe(III) complex exhibits a non-innocence ligand. It results in trivalent to divalent state change, in the appearance of a ligand radical cation, an extra hole, and a broader absorption spectrum. It also can affect its other electronic properties, such as electron injection capability. Thus, it can be considered an attractive candidate for the sensitizer in DSSCs

Downloads

Download data is not yet available.

Author Biographies

Mohamad Rodhi Faiz, Brawijaya University; State University of Malang

Department of Mechanical Engineering

Department of Electrical Engineering

Denny Widhiyanuriyawan, Brawijaya University

Department of Mechanical Engineering

Eko Siswanto, Brawijaya University

Department of Mechanical Engineering

Fazira Ilyana Abdul Razak, Universiti Teknologi Malaysia

Department of Chemistry

I Nyoman Gede Wardana, Brawijaya University

Department of Mechanical Engineering

References

Lewis, N. S., Crabtree, G., Nozik, A. J., Wasielewski, M. R., Alivisatos, P., Kung, H. et. al. (2005). Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization. U.S. Department of Energy Office of Scientific and Technical Information. doi: https://doi.org/10.2172/899136

Wu, C., Wang, K., Batmunkh, M., Bati, A. S. R., Yang, D., Jiang, Y. et. al. (2020). Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 70, 104480. doi: https://doi.org/10.1016/j.nanoen.2020.104480

Babar, F., Mehmood, U., Asghar, H., Mehdi, M. H., Khan, A. U. H., Khalid, H. et. al. (2020). Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review. Renewable and Sustainable Energy Reviews, 129, 109919. doi: https://doi.org/10.1016/j.rser.2020.109919

O’Regan, B., Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353 (6346), 737–740. doi: https://doi.org/10.1038/353737a0

Odobel, F., Pellegrin, Y., Gibson, E. A., Hagfeldt, A., Smeigh, A. L., Hammarström, L. (2012). Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coordination Chemistry Reviews, 256 (21-22), 2414–2423. doi: https://doi.org/10.1016/j.ccr.2012.04.017

Al-Ghamdi, A. A., Gupta, R. K., Kahol, P. K., Wageh, S., Al-Turki, Y. A., El Shirbeeny, W., Yakuphanoglu, F. (2014). Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell. Solid State Communications, 183, 56–59. doi: https://doi.org/10.1016/j.ssc.2013.12.021

Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M., Irwan, Y. M. (2015). Chlorophyll Pigments as Nature Based Dye for Dye-Sensitized Solar Cell (DSSC). Energy Procedia, 79, 896–902. doi: https://doi.org/10.1016/j.egypro.2015.11.584

Tamiaki, H., Tsuji, K., Kuno, M., Kimura, Y., Watanabe, H., Miyatake, T. (2016). Synthesis of chlorophyll- a derivatives methylated in the 3-vinyl group and their intrinsic site energy. Bioorganic & Medicinal Chemistry Letters, 26 (13), 3034–3037. doi: https://doi.org/10.1016/j.bmcl.2016.05.008

Refat, M. S. (2013). Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 105, 326–337. doi: https://doi.org/10.1016/j.saa.2012.12.041

Shalini, S., Balasundara prabhu, R., Prasanna, S., Mallick, T. K., Senthilarasu, S. (2015). Review on natural dye sensitized solar cells: Operation, materials and methods. Renewable and Sustainable Energy Reviews, 51, 1306–1325. doi: https://doi.org/10.1016/j.rser.2015.07.052

Arkan, F., Izadyar, M. (2017). The investigation of the central metal effects on the porphyrin-based DSSCs performance; molecular approach. Materials Chemistry and Physics, 196, 142–152. doi: https://doi.org/10.1016/j.matchemphys.2017.04.054

Arkan, F., Izadyar, M., Nakhaeipour, A. (2016). The role of the electronic structure and solvent in the dye-sensitized solar cells based on Zn-porphyrins: Theoretical study. Energy, 114, 559–567. doi: https://doi.org/10.1016/j.energy.2016.08.027

Özkan, G., Ersus Bilek, S. (2015). Enzyme-assisted extraction of stabilized chlorophyll from spinach. Food Chemistry, 176, 152–157. doi: https://doi.org/10.1016/j.foodchem.2014.12.059

Han, J., Wang, Y., Ma, J., Wu, Y., Hu, Y., Ni, L., Li, Y. (2013). Simultaneous aqueous two-phase extraction and saponification reaction of chlorophyll from silkworm excrement. Separation and Purification Technology, 115, 51–56. doi: https://doi.org/10.1016/j.seppur.2013.04.047

Çakar, S., Özacar, M. (2019). The pH dependent tannic acid and Fe-tannic acid complex dye for dye sensitized solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 371, 282–291. doi: https://doi.org/10.1016/j.jphotochem.2018.11.030

Çakar, S. (2019). 1,10 phenanthroline 5,6 diol metal complex (Cu, Fe) sensitized solar cells: A cocktail dye effect. Journal of Power Sources, 435, 226825. doi: https://doi.org/10.1016/j.jpowsour.2019.226825

Wang, D., Sun, Y., Shang, Q., Wang, X., Guo, T., Guan, H., Lu, Q. (2017). Effects of the conjugated structure of Fe–bipyridyl complexes on photoinduced electron transfer in TiO2 photocatalytic systems. Journal of Catalysis, 356, 32–42. doi: https://doi.org/10.1016/j.jcat.2017.09.009

Ferreira, H., von Eschwege, K. G., Conradie, J. (2016). Electronic properties of Fe charge transfer complexes – A combined experimental and theoretical approach. Electrochimica Acta, 216, 339–346. doi: https://doi.org/10.1016/j.electacta.2016.09.034

Setyawati, H., Darmokoesoemo, H., Ningtyas, A. T. A., Kadmi, Y., Elmsellem, H., Kusuma, H. S. (2017). Effect of metal ion Fe(III) on the performance of chlorophyll as photosensitizers on dye sensitized solar cell. Results in Physics, 7, 2907–2918. doi: https://doi.org/10.1016/j.rinp.2017.08.009

Lu, Y.-H., Liu, R.-R., Zhu, K.-L., Song, Y.-L., Geng, Z.-Y. (2016). Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells. Materials Chemistry and Physics, 181, 284–294. doi: https://doi.org/10.1016/j.matchemphys.2016.06.060

Ren, X., Jiang, S., Cha, M., Zhou, G., Wang, Z.-S. (2012). Thiophene-Bridged Double D-π-A Dye for Efficient Dye-Sensitized Solar Cell. Chemistry of Materials, 24 (17), 3493–3499. doi: https://doi.org/10.1021/cm302250y

Preat, J., Jacquemin, D., Perpète, E. A. (2010). Towards new efficient dye-sensitised solar cells. Energy & Environmental Science, 3 (7), 891. doi: https://doi.org/10.1039/c000474j

Zhang, J., Li, H.-B., Sun, S.-L., Geng, Y., Wu, Y., Su, Z.-M. (2012). Density functional theory characterization and design of high-performance diarylamine-fluorenedyes with different π spacers for dye-sensitized solar cells. J. Mater. Chem., 22 (2), 568–576. doi: https://doi.org/10.1039/c1jm13028e

Fan, W., Tan, D., Deng, W.-Q. (2012). Acene-Modified Triphenylamine Dyes for Dye-Sensitized Solar Cells: A Computational Study. ChemPhysChem, 13 (8), 2051–2060. doi: https://doi.org/10.1002/cphc.201200064

Preat, J., Jacquemin, D., Michaux, C., Perpète, E. A. (2010). Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chemical Physics, 376 (1-3), 56–68. doi: https://doi.org/10.1016/j.chemphys.2010.08.001

Preat, J., Michaux, C., Jacquemin, D., Perpète, E. A. (2009). Enhanced Efficiency of Organic Dye-Sensitized Solar Cells: Triphenylamine Derivatives. The Journal of Physical Chemistry C, 113 (38), 16821–16833. doi: https://doi.org/10.1021/jp904946a

Marinado, T., Nonomura, K., Nissfolk, J., Karlsson, M. K., Hagberg, D. P., Sun, L. et. al. (2009). How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes. Langmuir, 26 (4), 2592–2598. doi: https://doi.org/10.1021/la902897z

Lu, J., Meng, Q., Zhang, L., Liu, Y., Liu, W., Zhang, X. (2015). Single crystal structure, self-assembled nano-structure and semiconductor properties of a sandwich-type mixed (phthalocyaninato)(porphyrinato) europium triple-decker complex. Dyes and Pigments, 115, 1–6. doi: https://doi.org/10.1016/j.dyepig.2014.12.005

Bechaieb, R., Ben Akacha, A., Gérard, H. (2016). Quantum chemistry insight into Mg-substitution in chlorophyll by toxic heavy metals: Cd, Hg and Pb. Chemical Physics Letters, 663, 27–32. doi: https://doi.org/10.1016/j.cplett.2016.09.053

Neese, F. (2011). The ORCA program system. WIREs Computational Molecular Science, 2 (1), 73–78. doi: https://doi.org/10.1002/wcms.81

Neese, F. (2017). Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science, 8 (1). doi: https://doi.org/10.1002/wcms.1327

Neese, F., Wennmohs, F., Becker, U., Riplinger, C. (2020). The ORCA quantum chemistry program package. The Journal of Chemical Physics, 152 (22), 224108. doi: https://doi.org/10.1063/5.0004608

Weigend, F., Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7 (18), 3297. doi: https://doi.org/10.1039/b508541a

Schäfer, A., Horn, H., Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97 (4), 2571–2577. doi: https://doi.org/10.1063/1.463096

Weigend, F. (2006). Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics, 8 (9), 1057. doi: https://doi.org/10.1039/b515623h

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98 (7), 5648–5652. doi: https://doi.org/10.1063/1.464913

Lee, C., Yang, W., Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37 (2), 785–789. doi: https://doi.org/10.1103/physrevb.37.785

Barone, V., Cossi, M. (1998). Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A, 102 (11), 1995–2001. doi: https://doi.org/10.1021/jp9716997

Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77 (2), 123–141. doi: https://doi.org/10.1007/bf01114537

Neese, F. (2003). An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. Journal of Computational Chemistry, 24 (14), 1740–1747. doi: https://doi.org/10.1002/jcc.10318

Neese, F., Wennmohs, F., Hansen, A., Becker, U. (2009). Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A “chain-of-spheres” algorithm for the Hartree–Fock exchange. Chemical Physics, 356 (1-3), 98–109. doi: https://doi.org/10.1016/j.chemphys.2008.10.036

Nikolaienko, T. Y., Bulavin, L. A., Hovorun, D. M. (2014). JANPA: An open source cross-platform implementation of the Natural Population Analysis on the Java platform. Computational and Theoretical Chemistry, 1050, 15–22. doi: https://doi.org/10.1016/j.comptc.2014.10.002

Nikolaienko, T. Y., Bulavin, L. A. (2018). Localized orbitals for optimal decomposition of molecular properties. International Journal of Quantum Chemistry, 119 (3), e25798. doi: https://doi.org/10.1002/qua.25798

Jaramillo, P., Coutinho, K., Cabral, B. J. C., Canuto, S. (2012). Ionization of chlorophyll-c2 in liquid methanol. Chemical Physics Letters, 546, 67–73. doi: https://doi.org/10.1016/j.cplett.2012.07.040

Kunieda, M., Tamiaki, H. (2008). Synthesis of Zinc 3-Hydroxymethyl-porphyrins Possessing Carbonyl Groups at the 13- and/or 15-Positions for Models of Self-Aggregative Chlorophylls in Green Photosynthetic Bacteria. The Journal of Organic Chemistry, 73 (19), 7686–7694. doi: https://doi.org/10.1021/jo8014402

Bechaieb, R., Fredj, A. B., Akacha, A. B., Gérard, H. (2016). Interactions of copper(II) and zinc(II) with chlorophyll: insights from density functional theory studies. New Journal of Chemistry, 40 (5), 4543–4549. doi: https://doi.org/10.1039/c5nj03244j

Wu, Z., Xu, Z., Tan, H., Li, X., Yan, J., Dong, C., Zhang, L. (2019). Two novel rhodamine-based fluorescent probes for the rapid and sensitive detection of Fe3+: Experimental and DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213, 167–175. doi: https://doi.org/10.1016/j.saa.2019.01.032

Chen, H., Wang, J., Zhao, F., Wang, Y., He, H., Xia, H. (2019). Synthesis, spectroscopic and DFT studies of copper(I) complexes inserting the electron-donating groups into pyridine-imidazole ligands vis an acetylide linker. Inorganica Chimica Acta, 498, 119155. doi: https://doi.org/10.1016/j.ica.2019.119155

Erden, I., Hatipoglu, A., Cebeci, C., Aydogdu, S. (2020). Synthesis of D-π-A type 4,5-diazafluorene ligands and Ru (II) complexes and theoretical approaches for dye-sensitive solar cell applications. Journal of Molecular Structure, 1201, 127202. doi: https://doi.org/10.1016/j.molstruc.2019.127202

Wang, C., Li, J., Cai, S., Ning, Z., Zhao, D., Zhang, Q., Su, J.-H. (2012). Performance improvement of dye-sensitizing solar cell by semi-rigid triarylamine-based donors. Dyes and Pigments, 94 (1), 40–48. doi: https://doi.org/10.1016/j.dyepig.2011.11.002

Li, R., Lv, X., Shi, D., Zhou, D., Cheng, Y., Zhang, G., Wang, P. (2009). Dye-Sensitized Solar Cells Based on Organic Sensitizers with Different Conjugated Linkers: Furan, Bifuran, Thiophene, Bithiophene, Selenophene, and Biselenophene. The Journal of Physical Chemistry C, 113 (17), 7469–7479. doi: https://doi.org/10.1021/jp900972v

El Mahdy, A. M., Halim, S. A., Taha, H. O. (2018). DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells. Journal of Molecular Structure, 1160, 415–427. doi: https://doi.org/10.1016/j.molstruc.2018.02.041

Saito, K., Mitsuhashi, K., Ishikita, H. (2020). Dependence of the chlorophyll wavelength on the orientation of a charged group: Why does the accessory chlorophyll have a low site energy in photosystem II? Journal of Photochemistry and Photobiology A: Chemistry, 402, 112799. doi: https://doi.org/10.1016/j.jphotochem.2020.112799

Nogueira, A. E., Ribeiro, L. S., Gorup, L. F., Silva, G. T. S. T., Silva, F. F. B., Ribeiro, C., Camargo, E. R. (2018). New Approach of the Oxidant Peroxo Method (OPM) Route to Obtain Ti(OH)4 Nanoparticles with High Photocatalytic Activity under Visible Radiation. International Journal of Photoenergy, 2018, 1–10. doi: https://doi.org/10.1155/2018/6098302

AL-Temimei, F. A., Omran Alkhayatt, A. H. (2020). A DFT/TD-DFT investigation on the efficiency of new dyes based on ethyl red dye as a dye-sensitized solar cell light-absorbing material. Optik, 208, 163920. doi: https://doi.org/10.1016/j.ijleo.2019.163920


👁 56
⬇ 59
Published
2022-07-30
How to Cite
Faiz, M. R., Widhiyanuriyawan, D., Siswanto, E., Razak, F. I. A., & Wardana, I. N. G. (2022). Theoretical approach for Fe(II/III) and its chlorophyll-related complexes as sensitizers in dye-sensitized solar cells. EUREKA: Physics and Engineering, (4), 3-15. https://doi.org/10.21303/2461-4262.2022.002519
Section
Chemistry