Investigation of the protective capabilities of glass from laser sounding depending on its elemental composition

Keywords: information protection, laser acoustic reconnaissance systems, absorption coefficient, reflection coefficient


One of the most vulnerable issues in the technical protection of information is to obtain data via leakage through the opto-electronic channel.

In this paper, studies of the protective capabilities of glass from laser sounding depending on its elemental composition were carried out using such indicators as the coefficients of reflection and absorption of the laser beam by the window glass.

As a result of the work, an experimental installation based on a continuous solid-state laser was assembled.

The study of the elemental composition of window glass, which is produced by modern industry, X-ray fluorescence method and the study of the coefficients of reflection and absorption of glass samples in the experimental setup showed that the studied window glass chemically belongs to quartz (silicate).

All chemical elements involved in its formation can be divided into 3 groups: glass-forming, transitional, modifiers, which affects the optical properties of the studied glasses, as the elements used have different not only qualitative but also quantitative parameters.

Absorption increases if the number of chemical elements that exhibit amphoteric and non-metallic properties and have (-charge) decreases, and increases if the number of chemical elements in the glass that exhibit the most alkaline, alkaline earth properties and in which the radius of cations (+ions) increases.

Systematization of the elemental and quantitative composition of the studied window glass in accordance with the periods and groups of the periodic table of chemical elements, enabled the relationship between the electronic structure of chemical elements and the protective properties of glass


Download data is not yet available.

Author Biographies

Nazarii Dzianyi, Lviv Polytechnic National University

Department of Information Security

Valeriy Dudykevych, Lviv Polytechnic National University

Department of Information Security

Ivan Opirskyy, Lviv Polytechnic National University

Department of Information Security

Larysa Rakobovchuk, Lviv Polytechnic National University

Department of Information Security

Petro Haraniuk, Lviv Polytechnic National University

Department of Information Security


Rikhtechi, L., Rafe, V., Rezakhani, A. (2021). Secured Access Control in Security Information and Event Management Systems. Journal of Information Systems and Telecommunication, 9 (33), 67 78. doi:

Ten, C., Manimaran, G., Liu, C. (2010). Cybersecurity for critical infrastructures: Attack and defense modeling. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 40 (4), 853–865. doi:

Gaitonde, J. V., Lohani, R. B. (2020). Structural optimization and analysis of GaAs buried-gate OPFET for visible-light communication. Optical and Quantum Electronics, 52 (12), 512. doi:

Horev, A., Savin, A. (2021). Efficiency Research of Sun Protection Window Films for Speech Information Protection from LEAKAGE by Optoelectronic Channel. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2335–2339. doi:

Nassi, B., Pirutin, Y., Shamir, A., Elovici, Y., Zadov, B. (2020). Lamphone: Real-Time Passive Sound Recovery from Light Bulb Vibrations. IACR Cryptol. ePrint Arch., 708.

Wang, Z., Jiao, M., Zhang, Y., Zhang, F., Zhang, Z. (2021). Optical element fabrication for anti-sniper laser detection. Seventh Symposium on Novel Photoelectronic Detection Technology and Applications. doi:

Kataiev, V. S., Yaremchuk, Yu. Ye. (2019). Metod aktyvnoho zakhytu informatsii vid zniattia lazernymy systemamy akustychnoi rozvidky. Zakhyst informatsii, 21 (1), 34–39.

Abramov, P. I., Kuznetsov, E. V., Skvortsov, L. A. (2017). Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems: review. Journal of Optical Technology, 84, 331–341. doi:

Klochko, N. P., Barbash, V. A., Klepikova, K. S., Kopach, V. R., Tyukhov, I. I., Yashchenko, O. V., Zhadan, D. O. et. al. (2021). Biodegradable flexible transparent films with copper iodide and biomass-derived nanocellulose for ultraviolet and high-energy visible light protection. Solar Energy, 220, 852–863. doi:

Zeng, U., Pan, B., Cao, Y., Ai, H. (2021). Test and analysis of window vibration for anti-laser-eavesdropping. Applied Acoustics, 176. doi:

Dudykevych, V. B., Sobchuk, I. S., Rakobovchuk, V. O., Lych, S. V. (2015). Doslidzhennia vlastyvostei plivok na osnovi dioksydu hafniiu dlia zakhystu informatsii vid lazernoho zonduvannia. Zakhyst informatsii i bezpeka informatsiinykh system, 185–186.

Dudykevych, V., Sobchuk, I., Rakobovchuk, V. (2015). Ohrona informcji przed odczytem laserowym mikrofonem. Inzynier  wieku-2015-Bielsko-Biala, 455 464.

Dudykevych, V. B., Rakobovchuk, V. O. (2013). Vplyv elementnoho skladu na koefitsiient vidbyvannia zonduiuchoho promenia. Informatsiina bezpeka, 1 (9), 57–62.

Kinglshield Safety Film. Available at:

De La Cruz, B.-U. (2019). Using 3M Safety Films To Secure Windows and Prevent Break-Ins. Available at:

Anti-Glare Window Film Installation. Available at:

Guardian Window Film. Available at:

Gila Window Film. Available at:

Smarttint Window Film. Available at:

M Window Films. Available at:

Signalsdefense films. Available at:

Lych, S., Rakobovchuk, V. (2013). Protection of Window Glass from Acoustic Leakage. Computer science  engineering. Lviv, 248–248.

Spektralni kharakterystyky odnosharovykh oksydnykh plivok dlia zakhystu vid vytoku movnoi informatsii (2018). Komp’iuterni tekhnolohii drukarstva. Lviv, 104–110.

Dudykevych, V., Opirskyy, I., Garanuk, P., Rakobovcuk, L., Dzianyi, N. (2020). Impact research of sound vibration frequencies on the laser beam response of the most common Ukrainian glass. Advanced trends in radioelectronics, telecommunications and computer engineering. Lviv, Slavske, 213–217. doi:

Kataiev, V., Yaremchuk, Yu. (2019). The method of active protection of information from the laser acoustic intelligence systems. Ukrainian Information Security Research Journal, 21 (1), 34–39. doi:

GOST 111-90. Steklo listovoe. Available at:

Saint-Gobain Glass. Available at:

Guardian Glass. Glass Time. Technical Mannual (2013). Luxemburg CUARDIAN Europe Dudelange, 218.

EUROGLAS. Products and data (2010). Butzberg: EUROGLAS, 161.

Pilkington Glass Handbook (2010). Nippon Sheet Glass Co. Ltd, 200.

Orion Glass. Available at:

Precision analyzer Expert 3L. Available at:

Odinokov, S., Galkin, M. (2008). Izmeritel moshchnosti nepreryvnogo lazernogo izlucheniia rasshirennogo nano-mikro-millivattnogo diapazona. Photonics Russia, 6, 38–39. Available at:

Pocket Laser Power Meter 840011. Available at:

RF603 Technical description (2018). Instructions. Available at:

Optical scheme of installation: L – laser; S – sample; D1, D2 – detector (device for measuring the power of laser radiation)

👁 43
⬇ 48
How to Cite
Dzianyi, N., Dudykevych, V., Opirskyy, I., Rakobovchuk, L., & Haraniuk, P. (2022). Investigation of the protective capabilities of glass from laser sounding depending on its elemental composition. EUREKA: Physics and Engineering, (5), 162-174.
Material Science