Effect of particle size on ignition and oxidation of single aluminum: molecular dynamics study

Keywords: aluminum nanoparticles, oxidation of aluminum, molecular dynamic simulation, reaxFF

Abstract

Alumina nanoparticle is one of the attractive nanoparticles synthesized by the plasma method. The oxidation step in this method is challenging to explain experimentally. This work was to perform a molecular dynamics simulation to determine the oxidation mechanism of aluminum nanoparticles with different sizes and oxidation levels in the oxide layer. This work was to perform a molecular dynamics simulation to determine the oxidation mechanism of aluminum nanoparticles with different sizes and oxidation levels in the oxide layer. The simulation method employed the ReaxFF potential. The material used is aluminum nanoparticles in three different sizes (8, 12, and 16 nm) with an oxide layer thickness of 0.5 nm. Aluminum nanoparticles were given a relaxation treatment of 300 K for 1 ps and then heated to a temperature of 3250 K with a heating rate of 5×1013 K/s and cooled to 300 K. The ensemble used is a canonical ensemble with the Nose/Hoover thermostat method. The result shows that the higher the temperature applied to the system, the more oxygen molecules adsorption occurs on the surface of the oxide layer and the diffusion of oxygen to the particle core. The higher temperature applied also causes gaps, or void spaces, between the core and the shell. The reaction barrier for diffusion of oxygen also decreased significantly due to void space, and the surface of the aluminum core dissociates to the surface (alumina shell). Particles with a smaller size have a shorter ignition delay time. In addition, the smaller the particle size, the more oxygen molecules' reacted with aluminum particles in the particle core

Downloads

Download data is not yet available.

Author Biographies

Mahros Darsin, University of Jember

Department of Mechanical Engineering

Boy Arief Fachri, University of Jember

Department of Chemical Engineering

Haidzar Nurdiansyah, University of Jember

Department of Mechanical Engineering

References

Suresh, K., Selvarajan, V., Vijay, M. (2008). Synthesis of nanophase alumina, and spheroidization of alumina particles, and phase transition studies through DC thermal plasma processing. Vacuum, 82 (8), 814–820. doi: https://doi.org/10.1016/j.vacuum.2007.11.008

Washburn, E. B., Trivedi, J. N., Catoire, L., Beckstead, M. W. (2008). The Simulation of the Combustion of Micrometer-Sized Aluminum Particles with Steam. Combustion Science and Technology, 180 (8), 1502–1517. doi: https://doi.org/10.1080/00102200802125594

Zhou, Y., Liu, J., Liang, D., Shi, W., Yang, W., Zhou, J. (2017). Effect of particle size and oxygen content on ignition and combustion of aluminum particles. Chinese Journal of Aeronautics, 30 (6), 1835–1843. doi: https://doi.org/10.1016/j.cja.2017.09.006

Shuaibov, A., Minya, A., Malinina, A., Malinin, A., Gomoki, Z. (2020). Synthesis of aluminum oxide nanoparticles in overstressed nanosecond discharge plasma with the ectonic sputtering mechanism of aluminum electrodes. Highlights in BioScience, 3. doi: https://doi.org/10.36462/H.BioSci.20211

Gromov, A. A., Strokova, Y. I., Teipel, U. (2009). Stabilization of Metal Nanoparticles - A Chemical Approach. Chemical Engineering & Technology, 32 (7), 1049–1060. doi: https://doi.org/10.1002/ceat.200900022

Sundaram, D. S., Yang, V., Zarko, V. E. (2015). Combustion of nano aluminum particles (Review). Combustion, Explosion, and Shock Waves, 51 (2), 173–196. doi: https://doi.org/10.1134/s0010508215020045

Nurdiansyah, H., A, M. M., Ridha, F. (2020). Aluminum Combustion under Different Condition: A Review. Journal of Energy Mechanical Material and Manufacturing Engineering, 5 (2), 1. doi: https://doi.org/10.22219/jemmme.v5i2.12550

Zhang, C., Yao, Y., Chen, S. (2014). Size-dependent surface energy density of typically fcc metallic nanomaterials. Computational Materials Science, 82, 372–377. doi: https://doi.org/10.1016/j.commatsci.2013.10.015

Usharani, S., Rajendran, V. (2018). Size Controlled Synthesis and Characterization of V2O5/Al2O3 Nanocomposites. Colloid and Interface Science Communications, 24, 7–12. doi: https://doi.org/10.1016/j.colcom.2018.03.001

Sharma, A. K., Tiwari, A. K., Dixit, A. R. (2016). Characterization of TiO2, Al2O3 and SiO2 Nanoparticle based Cutting Fluids. Materials Today: Proceedings, 3 (6), 1890–1898. doi: https://doi.org/10.1016/j.matpr.2016.04.089

Selvan, B., Ramachandran, K., Sreekumar, K. P., Thiyagarajan, T. K., Ananthapadmanabhan, P. V. (2009). Numerical and experimental studies on DC plasma spray torch. Vacuum, 84 (4), 444–452. doi: https://doi.org/10.1016/j.vacuum.2009.09.009

Colombo, V., Ghedini, E., Sanibondi, P. (2008). Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas. Progress in Nuclear Energy, 50 (8), 921–933. doi: https://doi.org/10.1016/j.pnucene.2008.06.002

Gleizes, A., Gonzalez, J. J., Freton, P. (2005). Thermal plasma modelling. Journal of Physics D: Applied Physics, 38 (9), R153. doi: https://doi.org/10.1088/0022-3727/38/9/R01

Ananthapadmanabhan, P. V., Thiyagarajan, T. K., Sreekumar, K. P., Venkatramani, N. (2004). Formation of nano-sized alumina by in-flight oxidation of aluminium powder in a thermal plasma reactor. Scripta Materialia, 50 (1), 143–147. doi: https://doi.org/10.1016/j.scriptamat.2003.09.001

Li, Y., Clark, R., Nakano, A., Kalia, R., Vashishta, P. (2012). Molecular Dynamics Study of Size Dependence of Combustion of Aluminum Nanoparticles. MRS Proceedings, 1405. doi: https://doi.org/10.1557/opl.2012.346

Liu, P., Liu, J., Wang, M. (2019). Ignition and combustion of nano-sized aluminum particles: A reactive molecular dynamics study. Combustion and Flame, 201, 276–289. doi: https://doi.org/10.1016/j.combustflame.2018.12.033

Zeng, H., Cheng, X., Zhang, C., Lu, Z. (2018). Responses of Core–Shell Al/Al2O3 Nanoparticles to Heating: ReaxFF Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 122 (16), 9191–9197. doi: https://doi.org/10.1021/acs.jpcc.8b01088

Hong, S., van Duin, A. C. T. (2015). Molecular Dynamics Simulations of the Oxidation of Aluminum Nanoparticles using the ReaxFF Reactive Force Field. The Journal of Physical Chemistry C, 119 (31), 17876–17886. doi: https://doi.org/10.1021/acs.jpcc.5b04650

Huang, Y., Risha, G. A., Yang, V., Yetter, R. A. (2009). Effect of particle size on combustion of aluminum particle dust in air. Combustion and Flame, 156 (1), 5–13. doi: https://doi.org/10.1016/j.combustflame.2008.07.018

Sundaram, D. S., Puri, P., Yang, V. (2016). A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combustion and Flame, 169, 94–109. doi: https://doi.org/10.1016/j.combustflame.2016.04.005

Bazyn, T., Krier, H., Glumac, N. (2005). Oxidizer and Pressure Effects on the Combustion of 10-micron Aluminum Particles. Journal of Propulsion and Power, 21 (4), 577–582. doi: https://doi.org/10.2514/1.12732

Chung, S. W., Guliants, E. A., Bunker, C. E., Jelliss, P. A., Buckner, S. W. (2011). Size-dependent nanoparticle reaction enthalpy: Oxidation of aluminum nanoparticles. Journal of Physics and Chemistry of Solids, 72 (6), 719–724. doi: https://doi.org/10.1016/j.jpcs.2011.02.021

Feng, Y., Xia, Z., Huang, L., Yan, X. (2016). Experimental investigation on the combustion characteristics of aluminum in air. Acta Astronautica, 129, 1–7. doi: https://doi.org/10.1016/j.actaastro.2016.06.049

Alavi, S., Mintmire, J. W., Thompson, D. L. (2004). Molecular Dynamics Simulations of the Oxidation of Aluminum Nanoparticles. The Journal of Physical Chemistry B, 109 (1), 209–214. doi: https://doi.org/10.1021/jp046196x

Zheng, Y.-T., He, M., Cheng, G., Zhang, Z., Xuan, F.-Z., Wang, Z. (2018). Effect of ionization on the oxidation kinetics of aluminum nanoparticles. Chemical Physics Letters, 696, 8–11. doi: https://doi.org/10.1016/j.cplett.2018.02.039

Wang, W., Clark, R., Nakano, A., Kalia, R. K., Vashishta, P. (2010). Effects of oxide-shell structures on the dynamics of oxidation of Al nanoparticles. Applied Physics Letters, 96 (18), 181906. doi: https://doi.org/10.1063/1.3425888

Jeurgens, L. P. H., Sloof, W. G., Tichelaar, F. D., Mittemeijer, E. J. (2002). Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics, 92 (3), 1649–1656. doi: https://doi.org/10.1063/1.1491591

Chu, Q., Chu, B. S., Liao, L., Luo, K. H., Wang, N., Huang, C. (2018). Ignition and Oxidation of Core–Shell Al/Al2O3 Nanoparticles in an Oxygen Atmosphere: Insights from Molecular Dynamics Simulation. The Journal of Physical Chemistry C, 122 (51), 29620–29627. doi: https://doi.org/10.1021/acs.jpcc.8b09858

van Duin, A. C. T., Zou, C., Joshi, K., Bryantsev, V., Goddard, W. A. (2013). A Reaxff Reactive Force-field for Proton Transfer Reactions in Bulk Water and its Applications to Heterogeneous Catalysis. Computational Caalysis, 223–243. doi: https://doi.org/10.1039/9781849734905-00223

Chenoweth, K., van Duin, A. C. T., Persson, P., Cheng, M.-J., Oxgaard, J., Goddard, W. A. (2008). Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts. The Journal of Physical Chemistry C, 112 (37), 14645–14654. doi: https://doi.org/10.1021/jp802134x

Zheng, Y., Hong, S., Psofogiannakis, G., Rayner, Jr. G. B., Datta, S., van Duin, A. C. T., Engel-Herbert, R. (2017). Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition. ACS Applied Materials & Interfaces, 9 (18), 15848–15856. doi: https://doi.org/10.1021/acsami.7b01618

Hong, S., Krishnamoorthy, A., Rajak, P., Tiwari, S., Misawa, M., Shimojo, F. et al. (2017). Computational Synthesis of MoS2 Layers by Reactive Molecular Dynamics Simulations: Initial Sulfidation of MoO3 Surfaces. Nano Letters, 17 (8), 4866–4872. doi: https://doi.org/10.1021/acs.nanolett.7b01727

Alavi, S., Thompson, D. L. (2006). Molecular Dynamics Simulations of the Melting of Aluminum Nanoparticles. The Journal of Physical Chemistry A, 110 (4), 1518–1523. doi: https://doi.org/10.1021/jp053318s

Boiko, V. M., Poplavski, S. V. (2002). Self-ignition and ignition of aluminum powders in shock waves. Shock Waves, 11 (4), 289–295. doi: https://doi.org/10.1007/s001930100105

Noor, F., Zhang, H., Korakianitis, T., Wen, D. (2013). Oxidation and ignition of aluminum nanomaterials. Physical Chemistry Chemical Physics, 15 (46), 20176. doi: https://doi.org/10.1039/c3cp53171f

Gesner, J., Pantoya, M. L., Levitas, V. I. (2012). Effect of oxide shell growth on nano-aluminum thermite propagation rates. Combustion and Flame, 159 (11), 3448–3453. doi: https://doi.org/10.1016/j.combustflame.2012.06.002

Li, Y., Kalia, R. K., Nakano, A., Vashishta, P. (2013). Size effect on the oxidation of aluminum nanoparticle: Multimillion-atom reactive molecular dynamics simulations. Journal of Applied Physics, 114 (13), 134312. doi: https://doi.org/10.1063/1.4823984

Effect of particle size on ignition and oxidation of single aluminum: molecular dynamics study

👁 28
⬇ 49
Published
2023-05-25
How to Cite
Darsin, M., Fachri, B. A., & Nurdiansyah, H. (2023). Effect of particle size on ignition and oxidation of single aluminum: molecular dynamics study. EUREKA: Physics and Engineering, (3), 157-165. https://doi.org/10.21303/2461-4262.2023.002653
Section
Material Science