Smart automated fish feeding based on IoT system using LoRa TTGO SX1276 and cayenne platform

Keywords: automated fish feeding system, scheduling time, LoRa TTGO SX1276, cayenne platform, IoT, smart agriculture


One type of aquaculture that is commonly found in Indonesia is freshwater fisheries in the form of densely stocked fish ponds. An important factor that supports the success of this aquaculture is an appropriate and scheduled feeding system the fish. To address this problem, this paper proposed a smart automation system was designed and implemented to perform feeding management with solar panel as the power. To enhance the productivity of the fish, this paper proposing a new contribution based on Internet of Things (IoT) solution that could control and monitoring the schedule time and amount of feeding and the food behavior of fish. This system is accessed through the Cayenne website and using LoRa TTGO SX1276 to microcontroller and it showed that the schedule and amount of feed was successful with a high accuracy and the panel system also worked well in monitoring and controlling the power system. From the results of testing the entire system, it can be concluded that the feeding automation system can help optimize the productivity of freshwater aquaculture, and provides an innovative solution which user-friendly, secure, scalable, low cost and go green, reliable


Download data is not yet available.

Author Biographies

Alfriska Oktarina Silalahi, Institut Teknologi Del

Department of Informatics and Electrical Engineering

Amsal Sinambela, Institut Teknologi Del

Department of Informatics and Electrical Engineering

Hans Mawito Panggabean, Institut Teknologi Del

Department of Informatics and Electrical Engineering

Jekson T. N. Pardosi, Institut Teknologi Del

Department of Informatics and Electrical Engineering


Intensifying and expanding sustainable aquaculture production. Available at:

Wang, C., Li, Z., Wang, T., Xu, X., Zhang, X., Li, D. (2021). Intelligent fish farm—the future of aquaculture. Aquaculture International, 29 (6), 2681–2711. doi:

Goldburg, R., Naylor, R. (2005). Future seascapes, fishing, and fish farming. Frontiers in Ecology and the Environment, 3 (1), 21–28. doi:[0021:fsfaff];2

Troell, M., Kautsky, N., Beveridge, M., Henriksson, P., Primavera, J., Rönnbäck, P., Folke, C. (2013). Aquaculture. Encyclopedia of Biodiversity, 189–201. doi:

Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J. et al. (2000). Effect of aquaculture on world fish supplies. Nature, 405 (6790), 1017–1024. doi:

Abbasi, R., Martinez, P., Ahmad, R. (2022). An ontology model to represent aquaponics 4.0 system’s knowledge. Information Processing in Agriculture, 9 (4), 514–532. doi:

Dey, M. M., Garcia, Y. T., Praduman, K., Piumsombun, S., Haque, M. S., Li, L. et al. (2008). Demand for fish in Asia: a cross-country analysis. Australian Journal of Agricultural and Resource Economics, 52 (3), 321–338. doi:

Lanfranchi, M., Giannetto, C., D'Amico, M., Di Vita, G. (2014). Analysis of Demand Determinants of Fish Products in Messina: an Economic Survey on the Fish Consumption. ProQuest, 15 (142), 106–108. Available at:

Dey, M. M. (2000). Analysis of demand for fish in Bangladesh. Aquaculture Economics & Management, 4 (1-2), 63–81. doi:

Merino, G., Barange, M., Blanchard, J. L., Harle, J., Holmes, R., Allen, I. et al. (2012). Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change, 22 (4), 795–806. doi:

Tran, N., Rodriguez, U.-P., Chan, C. Y., Phillips, M. J., Mohan, C. V., Henriksson, P. J. G. et al. (2017). Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the AsiaFish model. Marine Policy, 79, 25–32. doi:

Little, D. C., Newton, R. W., Beveridge, M. C. M. (2016). Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential. Proceedings of the Nutrition Society, 75 (3), 274–286. doi:

Dugan, P., Dey, M. M., Sugunan, V. V. (2006). Fisheries and water productivity in tropical river basins: Enhancing food security and livelihoods by managing water for fish. Agricultural Water Management, 80 (1-3), 262–275. doi:

Khaoula, T., Abdelouahid, R. A., Ezzahoui, I., Marzak, A. (2021). Architecture design of monitoring and controlling of IoT-based aquaponics system powered by solar energy. Procedia Computer Science, 191, 493–498. doi:

Ahmad, N., Hasan, Md. M., Rohomun, M., Irin, R., Rahman, R. M. (2022). IoT and Computer Vision Based Aquaponics System. 2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). doi:

What Is Aquaculture and Why Do We Need It? Available at:


Gómez, M. G.-U., Hernández-Garciabada, F. (2004). Effect of the feeding ration on growth performance of Oreochromis mossambicus (Peters) larvae using decapsulated Artemia cysts as dietary supplement. Hidrobiológica, 14 (2), 137–144. Available at:

García-Ulloa, M., Gonzalez-Ochoa, O. A., Sangha, R., Zavala-Aguirre, J. L., Torres-Bugarín, O. (2005). Stocking density effects on growth and survival of red tilapia (Oreochromis mossambicus) fry fed a diet containing decapsulated Artemia cysts. Journal of Aquaculture in the Tropics. Available at:

Setijaningsih, L., Suryaningrum, L. H. (2015). Pemanfaatan limbah budidaya ikan lele (Clarias batrachus) untuk ikan nila (Oreochromis niloticus) dengan sistem resirkulasi. Berita biologi, 14 (3). Available at:

Eze, F., Avwemoya, F. E. (2019). Growth and Survival of Nile Tilapia (Oreochromis niloticus, Linnaeus 1758) Fry Fed at Diffrerent Inclusion Levels of Wonderful Kola (Buchholzia coriacea) Seed Meal (BSM). Asian Journal of Fisheries and Aquatic Research, 1–6. doi:

Craig, S., Helfrich, L., Kuhn, D. D., Schwarz, M. H. Understanding Fish Nutrition, Feeds, and Feeding. Available at:

Pillay, T. V. R. (2008). Aquaculture and the Environment. John Wiley & Sons, 212.

Diatin, I., Shafruddin, D., Hude, N., Sholihah, M., Mutsmir, I. (2021). Production performance and financial feasibility analysis of farming catfish (Clarias gariepinus) utilizing water exchange system, aquaponic, and biofloc technology. Journal of the Saudi Society of Agricultural Sciences, 20 (5), 344–351. doi:

Hermawan, T. E. S. A., Sudaryono, A., Prayitno, S. B. (2014). Pengaruh padat tebar berbeda terhadap pertumbuhan dan kelulushidupan benih lele (Clarias gariepinus) dalam media bioflok. Journal of Aquaculture Management and Technology, 3 (3).

Agusta, R., Zaidy, A. B., Hasan, O. D. S. (2022). Effect of addition of carbon and probiotics on water quality, production performance, and health of catfish (Clarias gariepinus) in biofloc systems. International Journal of Fisheries and Aquatic Studies, 10 (5), 43–49. doi:

Rozie, F., Syarif, I., Al Rasyid, M. U. H. (2020). Design and implementation of Intelligent Aquaponics Monitoring System based on IoT. 2020 International Electronics Symposium (IES). doi:

Ezzahoui, I., Abdelouahid, R. A., Taji, K., Marzak, A. (2021). Hydroponic and Aquaponic Farming: Comparative Study Based on Internet of things IoT technologies. Procedia Computer Science, 191, 499–504. doi:

Taji, K., Ait Abdelouahid, R., Ezzahoui, I., Marzak, A. (2021). Review on architectures of aquaponic systems based on the Internet of Things and artificial intelligence: Comparative study. The 4th International Conference on Networking, Information Systems Amp Security. doi:

Zhou, C., Xu, D., Lin, K., Sun, C., Yang, X. (2017). Intelligent feeding control methods in aquaculture with an emphasis on fish: a review. Reviews in Aquaculture, 10 (4), 975–993. doi:

Jadhav, K., Vaidya, G., Mali, A., Bankar, V., Mhetre, M., Gaikwad, J. (2020). IOT based Automated Fish Feeder. 2020 International Conference on Industry 4.0 Technology (I4Tech). doi:

Abu-Khadrah, A., Issa, G. F., Aslam, S., Shahzad, M., Ateeq, K., Hussain, M. (2022). IoT Based Smart Fish-Feeder and Monitoring System. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). doi:

Dewantara, B., Sulistiyowati, I. (2023). Automatic Fish Feeder And Telegram Based Aquarium Water Level Monitoring. doi:

Neshat, M., Sepidnam, G., Sargolzaei, M., Toosi, A. N. (2012). Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial Intelligence Review, 42 (4), 965–997. doi:

Gladju, J., Kamalam, B. S., Kanagaraj, A. (2022). Applications of data mining and machine learning framework in aquaculture and fisheries: A review. Smart Agricultural Technology, 2, 100061. doi:

Binti Hasim, H. N., Ramalingam, M., Ernawan, F., Puviarasi R. (2017). Developing fish feeder system using Raspberry Pi. 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). doi:

Osueke, O. C., Olayanju, T. M. A., Onokwai, A. O., Uzendu, P. (2018). Design and construction of an automatic fish feeder machine. International journal of mechanical engineering and technology (IJMET), 9 (10), 1631–1645.

Wei, H. C., Salleh, S. M., Mohd Ezree, A., Zaman, I., Hatta, M. H., Md Zain, B. A. et al. (2017). Improvement of automatic fish feeder machine design. Journal of Physics: Conference Series, 914, 012041. doi:

Noor, M. Z. H., Hussian, A. K., Saaid, M. F., Ali, M. S. A. M., Zolkapli, M. (2012). The design and development of automatic fish feeder system using PIC microcontroller. 2012 IEEE Control and System Graduate Research Colloquium. doi:

Development and performance evaluation of an automatic fish feeder (2014). 2014 ASABE Annual International Meeting. doi:

Balakrishnan, S., Rani, S. S., Ramya, K. C. Design and Development of IoT Based Smart Aquaculture System in a Cloud Environment. International Journal of Oceans and Oceanography, 13 (1), 121–127.

Sadeque, F. (2014). Design and Implementation of Automated Solar Tracking System. Bangladesh. doi:

Abdulrahman, A., Al-Nehari, H. A., Almakhlafy, A. N., Baggash, M. (2016). Design and Implementation of Solar Tracking System. International Journal of Engineering and Technical Research (IJETR), 4 (1), 71–75. Available at:

Ferdaus, R. A., Mohammed, M. A., Rahman, S., Salehin, S., Mannan, M. A. (2014). Energy Efficient Hybrid Dual Axis Solar Tracking System. Journal of Renewable Energy, 2014, 1–12. doi:

Muller, I., de Brito, R., Pereira, C., Brusamarello, V. (2010). Load cells in force sensing analysis -- theory and a novel application. IEEE Instrumentation & Measurement Magazine, 13 (1), 15–19. doi:

Beecham, R. V., Minchew, C. D., Parsons, G. R. (2007). Comparative Swimming Performance of Juvenile Pond‐Cultured and Wild‐Caught Channel Catfish. North American Journal of Fisheries Management, 27 (3), 729–734. doi:

Van Wassenbergh, S., Herrel, A., Adriaens, D., Aerts, P. (2005). A test of mouth-opening and hyoid-depression mechanisms during prey capture in a catfish using high-speed cineradiography. Journal of Experimental Biology, 208 (24), 4627–4639. doi:

Smart automated fish feeding based on IoT system using LoRa TTGO SX1276 and cayenne platform

👁 42
⬇ 21
How to Cite
Silalahi, A. O., Sinambela, A., Panggabean, H. M., & Pardosi, J. T. N. (2023). Smart automated fish feeding based on IoT system using LoRa TTGO SX1276 and cayenne platform. EUREKA: Physics and Engineering, (3), 66-79.