Development of mechanical property prediction model and optimization for dissimilar aluminum alloy joints with the friction stir welding (FSW) process

Keywords: optimization, dissimilar joint, aluminum alloy, friction stir welding, mechanical property, prediction model


Friction stir welding (FSW) is a solid-state joining process used to weld dissimilar aluminum alloys with varying material properties and compositions. Unlike traditional welding methods, FSW does not involve melting the materials being welded but instead uses a rotating tool to heat and stir the materials until they are in a plastic state. The process results in a welded joint with high strength, excellent ductility, and minimal distortion, making it a popular choice in various industries, including aerospace, automotive, and marine. AA6061-T6 (Mg-Si) and AA7075 (Al-Zn-Mg-Cu) aluminum alloys are one of the most popular grades of aluminum alloys used in current manufacturing industries, such as aerospace and automotive, joined by the Friction Stir Welding Process (FSW) technique. Taguchi orthogonal array (L9) experimental design was applied to reduce the number of insignificant factors in the process. First, the study determines three welding factors: rotation speed, travel speed, and pin eccentricity. Investigations found that travel speeds significantly on tensile strength (Ts) and elongation ( %El), but the rotational speed and tool eccentricity did not affect Ts and %El. Furthermore, considering the fabricated parameters on the hardness (HV) of the joint, it was found that all factors unaffected the HV of the joint zone at a 95 % confidence level. Next, examine the microstructure; Mg2Al3 and Al2O3 intermetallic compounds were found in the weld. Therefore, investigating the crystallite size found that welding significantly affects the crystallite size. Finally, consider the fracture surface, experimental condition A2B1C2 (optimal parameter), which is the parameter with the highest tensile strength having dimple fracture characteristics. On the other hand, the welding condition A1B3C3, the parameter with the lowest tensile strength, Small and fine dimple fracture with cleavage fracture. Because the material is highly ductile and can undergo large deformations before it is damaged. On the other hand, materials with low tensile strength exhibiting cleavage fracture indicate that the materials are brittle and can break easily under stress


Download data is not yet available.

Author Biographies

Yodprem Pookamnerd, Nakhon Phanom University

Faculty of Industrial Technology

Panuwat Thosa, Nakhon Phanom University

Faculty of Industrial Technology

Sittichai Charonerat, Nakhon Phanom University

Faculty of Industrial Technology

Suriya Prasomthong, Nakhon Phanom University

Faculty of Industrial Technology


Sarila, V., Koneru, H. P., Cheepu, M., Chigilipalli, B. K., Kantumuchu, V. C., Shanmugam, M. (2022). Microstructural and Mechanical Properties of AZ31B to AA6061 Dissimilar Joints Fabricated by Refill Friction Stir Spot Welding. Journal of Manufacturing and Materials Processing, 6 (5), 95. doi:

Matsuda, T., Ogaki, T., Hayashi, K., Iwamoto, C., Nozawa, T., Ohata, M., Hirose, A. (2022). Fracture dominant in friction stir spot welded joint between 6061 aluminum alloy and galvannealed steel based on microscale tensile testing. Materials & Design, 213, 110344. doi:

Karthikeyan, R. (2021). Establishing relationship between optimised friction stir spot welding process parameters and strength of aluminium alloys. Advances in Materials and Processing Technologies, 8 (1), 1173–1195. doi:

Zhang, G., Xiao, C., Ojo, O. O. (2021). Dissimilar friction stir spot welding of AA2024-T3/AA7075-T6 aluminum alloys under different welding parameters and media. Defence Technology, 17 (2), 531–544. doi:

Reimann, M., Goebel, J., dos Santos, J. F. (2017). Microstructure and mechanical properties of keyhole repair welds in AA 7075-T651 using refill friction stir spot welding. Materials & Design, 132, 283–294. doi:

Mercan, E., Ayan, Y., Kahraman, N. (2020). Investigation on joint properties of AA5754 and AA6013 dissimilar aluminum alloys welded using automatic GMAW. Engineering Science and Technology, an International Journal, 23 (4), 723–731. doi:

Arghode, V. K., Kumar, A., Sundarraj, S., Dutta, P. (2008). Computational Modeling of GMAW Process for Joining Dissimilar Aluminum Alloys. Numerical Heat Transfer, Part A: Applications, 53 (4), 432–455. doi:

Çam, G., Javaheri, V., Heidarzadeh, A. (2022). Advances in FSW and FSSW of dissimilar Al-alloy plates. Journal of Adhesion Science and Technology, 37 (2), 162–194. doi:

Abd Elnabi, M. M., El Mokadem, A., Osman, T. (2022). Optimization of process parameters for friction stir welding of dissimilar aluminum alloys using different Taguchi arrays. The International Journal of Advanced Manufacturing Technology, 121 (5-6), 3935–3964. doi:

Texier, D., Atmani, F., Bocher, P., Nadeau, F., Chen, J., Zedan, Y. et al. (2018). Fatigue performances of FSW and GMAW aluminum alloys welded joints: Competition between microstructural and structural-contact-fretting crack initiation. International Journal of Fatigue, 116, 220–233. doi:

Kumar, P. S., Chander, M. S. (2021). Effect of tool pin geometry on FSW dissimilar aluminum alloys - (AA5083 & AA6061). Materials Today: Proceedings, 39, 472–477. doi:

Moradi, M. M., Jamshidi Aval, H., Jamaati, R., Amirkhanlou, S., Ji, S. (2018). Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. Journal of Manufacturing Processes, 32, 1–10. doi:

Abd Elnabi, M. M., Elshalakany, A. B., Abdel-Mottaleb, M. M., Osman, T. A., El Mokadem, A. (2019). Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar AA5454–AA7075 aluminum alloys. Journal of Materials Research and Technology, 8 (2), 1684–1693. doi:

Saravanan, V., Rajakumar, S., Muruganandam, A. (2016). Effect of Friction Stir Welding Process Parameters on Microstructure and Mechanical Properties of Dissimilar AA6061-T6 and AA7075-T6 Aluminum Alloy Joints. Metallography, Microstructure, and Analysis, 5 (6), 476–485. doi:

Song, S.-W., Kim, B.-C., Yoon, T.-J., Kim, N.-K., Kim, I.-B., Kang, C.-Y. (2010). Effect of Welding Parameters on Weld Formation and Mechanical Properties in Dissimilar Al Alloy Joints by FSW. MATERIALS TRANSACTIONS, 51 (7), 1319–1325. doi:

Cavaliere, P., De Santis, A., Panella, F., Squillace, A. (2009). Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Materials & Design, 30 (3), 609–616. doi:

Koilraj, M., Sundareswaran, V., Vijayan, S., Koteswara Rao, S. R. (2012). Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 – Optimization of process parameters using Taguchi technique. Materials & Design, 42, 1–7. doi:

Yunus, M., Alsoufi, M. S. (2015). A statistical analysis of joint strength of dissimilar aluminium alloys formed by friction stir welding using taguchi design approach, anova for the optimization of process parameters. IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET), 3 (7), 61–68. Available at:

Murali Krishna, P., Ramanaiah, N., Prasada Rao, K. (2013). Optimization of process parameters for friction Stir welding of dissimilar Aluminum alloys (AA2024 -T6 and AA6351-T6) by using Taguchi method. International Journal of Industrial Engineering Computations, 4, 71–80. doi:

Harachai, K., Prasomthong, S. (2023). Investigation of the optimal parameters for butt joints in a friction stir welding (FSW) process with dissimilar aluminium alloys. Materials Research Express, 10 (2), 026514. doi:

Silachai, A., Prasomthong, S. (2022). Optimized parameter of dissimilar joining between Al6061-T6 and height-strength steel with friction stir spot welding process (FSSW). Journal of Metals, Materials and Minerals, 32 (4), 118–127. doi:

Ramamurthy, M., Balasubramanian, P., Senthilkumar, N., Anbuchezhiyan, G. (2022). Influence of process parameters on the microstructure and mechanical properties of friction stir welds of AA2014 and AA6063 aluminium alloys using response surface methodology. Materials Research Express, 9 (2), 026528. doi:

Palanivel, R., Laubscher, R., Vigneshwaran, S., Dinaharan, I. (2016). Prediction and optimization of the mechanical properties of dissimilar friction stir welding of aluminum alloys using design of experiments. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232 (8), 1384–1394. doi:

Meengam, C., Sillapasa, K. (2020). Evaluation of Optimization Parameters of Semi-Solid Metal 6063 Aluminum Alloy from Friction Stir Welding Process Using Factorial Design Analysis. Journal of Manufacturing and Materials Processing, 4 (4), 123. doi:

Heidarzadeh, A., Khodaverdizadeh, H., Mahmoudi, A., Nazari, E. (2012). Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints. Materials & Design, 37, 166–173. doi:

Shojaeefard, M. H., Behnagh, R. A., Akbari, M., Givi, M. K. B., Farhani, F. (2013). Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Materials & Design, 44, 190–198. doi:

Gupta, S. K., Pandey, K., Kumar, R. (2016). Artificial intelligence-based modelling and multi-objective optimization of friction stir welding of dissimilar AA5083-O and AA6063-T6 aluminium alloys. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232 (4), 333–342. doi:

Dewan, M. W., Huggett, D. J., Warren Liao, T., Wahab, M. A., Okeil, A. M. (2016). Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network. Materials & Design, 92, 288–299. doi:

Babajanzade Roshan, S., Behboodi Jooibari, M., Teimouri, R., Asgharzadeh-Ahmadi, G., Falahati-Naghibi, M., Sohrabpoor, H. (2013). Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm. The International Journal of Advanced Manufacturing Technology, 69 (5-8), 1803–1818. doi:

Shunmugasundaram, M., Nagarajan, S. M., Reddy, Y., Chaurasiya, P. K., Kumar, A., Rajak, U. (2021). An Experimental Study and Joining Parameters Optimization of Friction Stir Weld Butt Joint by Taguchi Approach to Maximize the Mechanical Properties. Arabian Journal for Science and Engineering, 47 (7), 8601–8615. doi:

Seshu Kumar, G. S. V., Kumar, A., Rajesh, S., Chekuri, R. B. R., Ramakotaiah, K. (2022). An experimental study and parameter optimization of FSW for welding dissimilar 6061 and 7075 Al alloys. International Journal on Interactive Design and Manufacturing (IJIDeM), 17 (1), 215–223. doi:

Kumar, R. R., Singh, A., Kumar, A., Ansu, A. kumar, Kumar, A., Kumar, S., Kumar, D. et al. (2022). Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology. International Journal on Interactive Design and Manufacturing (IJIDeM). doi:

Prasomthong, S., Kaewchaloon, A., Charonerat, S. (2022). Optimization of friction stir spot welding between aluminium alloys and titanium alloy by the Taguchi method. SNRU Journal of Science and Technology, 14 (3), 245169. doi:

Nakowong, K., Sillapasa, K. (2021). Optimized Parameter for Butt Joint in Friction Stir Welding of Semi-Solid Aluminum Alloy 5083 Using Taguchi Technique. Journal of Manufacturing and Materials Processing, 5 (3), 88. doi:

Cong, N. T., Thoa, P. T. T., Tien, D. H. (2021). Research of multi-response optimization of milling process of hardened S50C steel using minimum quantity lubrication of Vietnamese peanut oil. EUREKA: Physics and Engineering, 6, 74–88. doi:

Thinh, H. X., Trung, D. D. (2022). A research on application of the measurement of alternatives and ranking according to compromise solution method for multi-criteria decision making in the grinding process. EUREKA: Physics and Engineering, 2, 101–110. doi:

Trung, D. D., Ha, L. D. (2022). Research on selection of abrasive grain size and cutting parameters when grinding of interrupted surface using aluminum oxide grinding wheel with ceramic binder. EUREKA: Physics and Engineering, 1, 93–102. doi:

Development of mechanical property prediction model and optimization for dissimilar aluminum alloy joints with the friction stir welding (FSW) process

👁 24
⬇ 21
How to Cite
Pookamnerd, Y., Thosa, P., Charonerat, S., & Prasomthong, S. (2023). Development of mechanical property prediction model and optimization for dissimilar aluminum alloy joints with the friction stir welding (FSW) process. EUREKA: Physics and Engineering, (3), 112-128.