Optimization of technological parameters in ultrasonic welding of the polypropylene fabric using Taguchi and FCCCD methods

Keywords: ultrasonic welding, optimization, nonwoven fabrics, breaking strength, Taguchi method, FCCCD

Abstract

Ultrasonic welding is a welding method that has been applied for welding nonwoven fabrics, with many advantages such as fast speed, high reliability, easy automation and especially less pollution to the environment. This paper studies the optimization of technological parameters in the welding process such as welding time, pressure, and weld shape on the breaking strength of ultrasonic welding of Polypropylene (PP) nonwovens. To evaluate the influence level and find the reasonable technological parameters domain in the paper, the Taguchi method is used in combination with the face-centered central composite design (FCCCD) response surface method. The research results have determined the regression equations used to calculate the breaking strength for each weld shape as well as the optimal domain for the main technological parameters, ensuring the breaking strength of the weld. There are different degrees of influence of technological parameters (shape of the weld zone, welding time and welding pressure) on the breaking strength of ultrasonic welds. Among them, the influence level of welding time t is 45.31 %, the weld shape is Pattern 2 with the rate of 30.03 %, and the welding pressure is 24.66 %. Carrying out a verification test with the welding parameters: t=1.6 s, p=3.1 kgf/cm2, two patterns ( Pattern 2 and Pattern 3), the result of breaking strength for patterns was achieved. Pattern 2 has a difference of 1.19 % between the regression equation results and the actual experimental results, while the figure for Pattern 3 is 0.77 %. From these results, it is possible to select the appropriate technological parameters for ultrasonic welding equipment when processing products from nonwoven fabrics to ensure the highest quality and productivity

Downloads

Download data is not yet available.

Author Biographies

Thanh Quang Le, Ho Chi Minh City University of Technology (HCMUT); Vietnam National University Ho Chi Minh City; Ho Chi Minh City University of Transport

Faculty of Mechanical Engineering

Faculty of Mechanical Engineering

Thanh Hai Nguyen, Ho Chi Minh City University of Technology (HCMUT); Vietnam National University Ho Chi Minh City

Faculty of Mechanical Engineering

Loc Huu Nguyen, Ho Chi Minh City University of Technology (HCMUT); Vietnam National University Ho Chi Minh City

Faculty of Mechanical Engineering

References

de Leon, M., Shin, H.-S. (2022). Review of the advancements in aluminum and copper ultrasonic welding in electric vehicles and superconductor applications. Journal of Materials Processing Technology, 307, 117691. doi: https://doi.org/10.1016/j.jmatprotec.2022.117691

Unnikrishnan, T. G., Kavan, P. (2022). A review study in ultrasonic-welding of similar and dissimilar thermoplastic polymers and its composites. Materials Today: Proceedings, 56, 3294–3300. doi: https://doi.org/10.1016/j.matpr.2021.09.540

Boz, S., Küçük, M. (2021). The analysis of the ultrasonic welding performance for the medical protective clothing. Tekstil ve konfeksiyon. doi: https://doi.org/10.32710/tekstilvekonfeksiyon.811584

Hunstig, M., Schaermann, W., Broekelmann, M., Holtkaemper, S., Siepe, D., Hesse, H. J. (2020). Smart Ultrasonic Welding in Power Electronics Packaging. CIPS 2020; 11th International Conference on Integrated Power Electronics Systems. Available at: https://ieeexplore.ieee.org/document/9097722

Long, Z., Ju, J., Chen, Z., Kireeva, M., Liu, X., Ye, S. (2022). A novel ultrasonic transducer with multiple vibrations in microelectronic packaging. Sensors and Actuators A: Physical, 341, 113582. doi: https://doi.org/10.1016/j.sna.2022.113582

El-Barbary, A. F. M. (2021). The Effect of using Ultrasonic In Sewing Leather Garments. International Design Journal, 11 (4), 347–358. Available at: https://digitalcommons.aaru.edu.jo/cgi/viewcontent.cgi?article=1466&context=faa-design

Karimi, F., Soltani, P., Zarrebini, M., Hassanpour, A. (2022). Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings. Journal of Building Engineering, 50, 104125. doi: https://doi.org/10.1016/j.jobe.2022.104125

Wu, W., Urabe, K., Hirogaki, T., Aoyama, E., Sota, H. (2020). Investigation of Production of Nanofiber Nonwoven Fabric and its Thermal Properties. International Journal of Automation Technology, 14 (2), 264–273. doi: https://doi.org/10.20965/ijat.2020.p0264

Wang, W., Feng, L., Song, B., Wang, L., Shao, R., Xia, Y. et al. (2022). Fabrication and application of superhydrophobic nonwovens: a review. Materials Today Chemistry, 26, 101227. doi: https://doi.org/10.1016/j.mtchem.2022.101227

Kuo, C.-C., Tsai, Q.-Z., Li, D.-Y., Lin, Y.-X., Chen, W.-X. (2022). Optimization of Ultrasonic Welding Process Parameters to Enhance Weld Strength of 3C Power Cases Using a Design of Experiments Approach. Polymers, 14 (12), 2388. doi: https://doi.org/10.3390/polym14122388

Raza, S. F., Khan, S. A., Mughal, M. P. (2019). Optimizing the weld factors affecting ultrasonic welding of thermoplastics. The International Journal of Advanced Manufacturing Technology, 103 (5-8), 2053–2067. doi: https://doi.org/10.1007/s00170-019-03681-7

Chand, S., Bhat, G. S., Spruiell, J. E., Malkan, S. (2001). Structure and properties of polypropylene fibers during thermal bonding. Thermochimica Acta, 367–368, 155–160. doi: https://doi.org/10.1016/s0040-6031(00)00672-9

Bhat, G. S., Jangala, P. K., Spruiell, J. E. (2004). Thermal bonding of polypropylene nonwovens: Effect of bonding variables on the structure and properties of the fabrics. Journal of Applied Polymer Science, 92 (6), 3593–3600. doi: https://doi.org/10.1002/app.20411

Warner, S. B. (1989). Thermal Bonding of Polypropylene Fibers. Textile Research Journal, 59 (3), 151–159. doi: https://doi.org/10.1177/004051758905900304

Fedorova, N., Verenich, S., Pourdeyhimi, B. (2007). Strength Optimization of Thermally Bonded Spunbond Nonwovens. Journal of Engineered Fibers and Fabrics, 2 (1), 155892500700200. doi: https://doi.org/10.1177/155892500700200104

Ghosh, S., Reddy, R. (2009). Ultrasonic sealing of polyester and spectra fabrics using thermo plastic properties. Journal of Applied Polymer Science, 113 (2), 1082–1089. doi: https://doi.org/10.1002/app.30050

Jana, P. (2011). Assembling Technologies for Functional Garments – An Overview. Indian Journal of Fibre & Textile Research, 36, 380–387. Available at: https://nopr.niscpr.res.in/handle/123456789/13232.

Kayar, M., Mistik, S. I., Inan, D. (2015). Analysing effect of the factors on ultrasonic seam tensile properties of nonwoven fabrics by Nested Anova Design. International Journal of Clothing Science and Technology, 27 (6), 803–817. doi: https://doi.org/10.1108/ijcst-05-2014-0066

Eryuruk, S. H., Karagüzel Kayaoglu, B., Kalaoglu, F. (2017). A study on ultrasonic welding of nonwovens used for surgical gowns. International Journal of Clothing Science and Technology, 29 (4), 539–552. doi: https://doi.org/10.1108/ijcst-05-2016-0048

Arabaci, U., Özdemir, U. (2022). Influence of The Welding Time on The Structure and Mechanical Properties of Vibration Welded PPT20 Polymers. Contemporary Multidisciplinary Technical Research, 8, 169–180. Available at: https://avesis.gazi.edu.tr/yayin/5eecf1f7-7b7b-4872-a771-b2a222226de2/contemporary-multidisciplinary-technical-research

Nguyen, T., Thanh, L. Q., Loc, N. H., Huu, M. N., Nguyen Van, A. (2020). Effects of Different Roller Profiles on the Microstructure and Peel Strength of the Ultrasonic Welding Joints of Nonwoven Fabrics. Applied Sciences, 10 (12), 4101. doi: https://doi.org/10.3390/app10124101

Shi, W., Little, T. (2000). Mechanisms of ultrasonic joining of textile materials. International Journal of Clothing Science and Technology, 12 (5), 331–350. doi: https://doi.org/10.1108/09556220010377869

Loc, N., Hung, T. Q. (2021). Optimization of Cutting Parameters on Surface Roughness and Productivity when Milling Wood Materials. Journal of Machine Engineering, 21 (4), 72–89. doi: https://doi.org/10.36897/jme/144426

Nguyen, H. L., Tran, V. T. (2022). Applying FCCCD Response Surface Method in Studying the Cutting Power of Wood Materials. Solid State Phenomena, 329, 25–31. doi: https://doi.org/10.4028/p-kjkk7u

Optimization of technological parameters in ultrasonic welding of the polypropylene fabric using Taguchi and FCCCD methods

👁 275
⬇ 190
Published
2023-05-25
How to Cite
Le, T. Q., Nguyen, T. H., & Nguyen, L. H. (2023). Optimization of technological parameters in ultrasonic welding of the polypropylene fabric using Taguchi and FCCCD methods. EUREKA: Physics and Engineering, (3), 97-111. https://doi.org/10.21303/2461-4262.2023.002777
Section
Engineering