Impact elements of feed grinder: a review

Keywords: crushing, impact, hammers, destruction, cracking, crushers, feed, collision, shear

Abstract

The article deals with the issue concerning the working bodies of technological equipment designed for grinding pieces and particles of feed raw materials. The most profiTable feed raw materials are by-products and waste materials of animal origin, which have a valuable high-protein content. An alternative way of mandatory waste disposal is their processing, including mechanical grinding to obtain feed products. In the process of grinding, particular importance is given to the working bodies, with the help of which the raw material is directly divided into parts. In this case, the destruction of the feed material often occurs by means of impact. Impact phenomena have proven to be highly effective in the process of intense cracking and chipping, which leads to the desired separation of the crushed particles into smaller ones. However, it is found that crushers have insufficient efficiency of impact elements. The work analyzes the processes of impact grinding from the standpoint of a number of scientific hypotheses, theories, modeling, simulation, experience and approbation, presented in various scientific publications. When studying and improving the theory of impact, attention is paid to nonlinear problems, cracking, modernization of the theory of brittle fracture, diagrams of force changes during impact force, impact equations, wave theory of impact, peridynamic theory. It should be noted that the main scientific results are directly reflected in the improvement of the design features of hammers. It has been revealed that the main improvement in the design of impact elements is in the direction of increasing the efficiency of working surfaces and developing the combination of impact with cutting, abrasion and crushing

Downloads

Download data is not yet available.

Author Biographies

Ruslan Iskakov, S. Seifullin Kazakh Agro Technical University

Department of Agrarian Technique and Technology

Sultanbek Issenov, S. Seifullin Kazakh Agro Technical University

Department of Electrical Equipment Operation

Gulmira Kubentaeva, S. Seifullin Kazakh Agro Technical University

Department of Technical Mechanics

References

Iskakov, M. M., Iskakov, R. M. (2011). Veterinarnye konfiskaty i ikh pererabotka. Almaty, 216.

Iskakov, R. М., Issenov, S. S., Iskakova, A. M., Halam, S., Beisebekova, D. M. (2015). Microbiological Appraisal of Feed Meal of Animal Origin, Produced by Drying and Grinding Installation. Journal of Pure and Applied Microbiology, 9 (1), 587–592. Available at: https://microbiologyjournal.org/microbiological-appraisal-of-feed-meal-of-animal-origin-produced-by-drying-and-grinding-installation/

Tlebayev, M. B., Biibosunov, B. I., Taszhurekova, Z. K., Baizharikova, M. A., Aitbayeva, Z. K. (2020). Creation of a computer-assisted mathematical model for the raw materials biological processing. Periódico Tchê Química, 17 (35), 640–654. doi: https://doi.org/10.52571/ptq.v17.n35.2020.55_tlebayev_pgs_640_654.pdf

Chen, H., Gao, S., Li, Y., Xu, H.-J., Li, W., Wang, J., Zhang, Y. (2022). Valorization of Livestock Keratin Waste: Application in Agricultural Fields. International Journal of Environmental Research and Public Health, 19 (11), 6681. doi: https://doi.org/10.3390/ijerph19116681

Kremenevskaya, M. I. (2019). Nauchnye osnovy tekhnologiy glubokoy pererabotki uglevodorodsoderzhaschego syr'ya s polucheniem produktov s zadannymi svoystvami. Sankt-Peterburg, 403.

Piskaeva, A. I. (2019). Poluchenie vysokoproteinovoy kormovoy dobavki iz drugikh istochnikov. Kemerovo, 16.

D'yachenko, M. M. (2012). Obosnovanie i razrabotka tekhnologii kormovoy muki iz myasokostnykh tkaney tyuleney. Moscow, 25.

Konstantinovskaya, M. A. (206). Tekhnologiya polucheniya gidrolizatov i kormovoy biomassy iz otkhodov proizvodstva kostnoy muki. Schelkovo, 23.

Hendriks, W. H., Butts, C. A., Thomas, D. V., James, K. A. C., Morel, P. C. A., Verstegen, M. W. A. (2002). Nutritional Quality and Variation of Meat and Bone Meal. Asian-Australasian Journal of Animal Sciences, 15 (10), 1507–1516. doi: https://doi.org/10.5713/ajas.2002.1507

Iskakov, R. M., Iskakova, A. M., Nurushev, M. Z., Khaimuldinova, A. K., Karbayev, N. K. (2021). Method for the Production of Fat from Raw Materials and Animal Waste. Journal of Pure and Applied Microbiology, 15 (2), 716–724. doi: https://doi.org/10.22207/jpam.15.2.23

Abilzhanuly, T., Iskakov, R., Abilzhanov, D., Darkhan, O. (2023). Determination of the average size of preliminary grinded wet feed particles in hammer grinders. Eastern-European Journal of Enterprise Technologies, 1 (1 (121)), 34–43. doi: https://doi.org/10.15587/1729-4061.2023.268519

Iskakov, R., Issenov, S., Zaichko, G. (2021). System Analysis of Impact-Splitting Grinding in a Hammer Mill. Trudy Universiteta, 3, 54–60. doi: https://doi.org/10.52209/1609-1825_2021_3_54

Kachaev, A. E. (2011). K opredeleniyu vremeni udara i moschnosti dezintegratora, raskhoduemoy na izmel'chenie pri udarnom vozdeystvii. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V. G. Shukhova, 3. Available at: https://cyberleninka.ru/article/n/k-opredeleniyu-vremeni-udara-i-moschnosti-dezintegratora-rashoduemoy-na-izmelchenie-pri-udarnom-vozdeystvii/viewer

Iskakov, R., Sugirbay, A. (2023). Technologies for the Rational Use of Animal Waste: A Review. Sustainability, 15 (3), 2278. doi: https://doi.org/10.3390/su15032278

Slepukhin, V. V. (2010). Modelirovanie volnovykh protsessov pri prodolzhitel'nom udare v sterzhnevykh sistemakh neodnorodnoy struktury. Ul'yanovsk, 20.

Glebov, L. A., Demskiy, A. B., Vedenev, V. F., Yablokov, A. E. (2010). Tekhnologicheskoe oborudovanie i tekhnologicheskie linii zernopererabatyvayuschikh predpriyatiy. Moscow: DeLi print, 696.

Abraham, F. F. (2001). The atomic dynamics of fracture. Journal of the Mechanics and Physics of Solids, 49 (9), 2095–2111. doi: https://doi.org/10.1016/s0022-5096(01)00028-x

Hesch, C., Weinberg, K. (2014). Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. International Journal for Numerical Methods in Engineering, 9 (12), 906–924. doi: https://doi.org/10.1002/nme.4709

Lee, C. H., Gil, A. J., Ghavamian, A., Bonet, J. (2019). A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics. Computer Methods in Applied Mechanics and Engineering, 344, 209–250. doi: https://doi.org/10.1016/j.cma.2018.09.033

Moiseev, O. N. (1998). Prognozirovanie resursa molotovykh drobilok dlya povysheniya effektivnosti ikh funktsionirovaniya. Zernograd, 20.

Kochetkov, A. V., Fedotov, P. V. (2013). Some questions of the theory of blow. Nauka o nauke, 5, 1–15. Available at: https://naukovedenie.ru/PDF/110tvn513.pdf

Shostenko, D. N. (2005). Kontaktnoe szhatie i soudarenie dvukh uprugo-plastichnykh tel. Velikiy Novgorod, 169. Available at: https://www.dissercat.com/content/kontaktnoe-szhatie-i-soudarenie-dvukh-uprugo-plastichnykh-tel

Leybovich, M. V. (2016). Teoriya udara v zadachakh i primerakh. Khabarovsk: Izd-vo Tikhookean. gos. un-t, 236. Available at: https://pnu.edu.ru/media/filer_public/93/7e/937eabd0-bab4-4e4a-866f-692316b25c4a/posobie-leibovich.pdf

Yudin, V. A. (2017). Dopolnitel'nye lektsii po teoreticheskoy mekhanike. Novosibirsk, 80.

Makovkin, G. A., Aistov, A. S., Baranova, A. S., Kruglova, T. E., Kulikov, I. S., Nikitina, E. A. et al. (2013). Internet-testirovanie po teoreticheskoy mekhanike. Vyp. 6. Elementy teorii udara i teorii kolebaniy. Metodicheskie ukazaniya po podgotovke k internet- testirovaniyu po teoreticheskoy mekhanike. Nizhniy Novgorod: NGASU, 5.

Manzhosov, V. K. (2006). Modeli dlitel'nogo udara. Ul'yanovsk: Ul'yanovskiy gosudarstvennyy tekhnicheskiy universitet, 160. Available at: http://lib.ulstu.ru/venec/v9/Manzhosov.pdf

Biderman, V. L. (1959). Raschet udarnoy nagruzki. Prochnostnye raschety v mashinostroenii. Vol. 3. Moscow: Mashgiz, 479–580.

Panovko, Ya. G. (1977). Vvedenie v teoriyu mekhanicheskogo udara. Moscow: Nauka, 220.

Panovko, Ya. G. (1991). Vvedenie v teoriyu mekhanicheskikh koles. Moscow: Nauka, 252.

Maudlin, T. (2011). How bell reasoned: A reply to Griffiths. American Journal of Physics, 79 (9), 966–970. doi: https://doi.org/10.1119/1.3606476

Markochev, V. M., Alymov, M. I. (2017). On The Brittle Fracture Theory By Ya. Frenkel And A. Griffith. Chebyshevskii Sbornik, 18 (3), 381–393. doi: https://doi.org/10.22405/2226-8383-2017-18-3-381-393

Bonet, J., Gil, A. J. (2021). Mathematical models of supersonic and intersonic crack propagation in linear elastodynamics. International Journal of Fracture, 229 (1), 55–75. doi: https://doi.org/10.1007/s10704-021-00541-y

Hayakawa, H., Kuninaka, H. (2004). Theory of the Inelastic Impact of Elastic Materials. Phase Transitions, 77 (8-10), 889–909. doi: https://doi.org/10.1080/01411590410001690936

Liu, B., Zhang, D. X., Zong, L. (2010). Investigation on the Motion States of the Hammers while Hammer Mill Steady Running by High-Speed Photography. Applied Mechanics and Materials, 42, 317–321. doi: https://doi.org/10.4028/www.scientific.net/amm.42.317

Smits, M., Kronbergs, E. (2017). Determination center of percussion for hammer mill hammers. Engineering for Rural Development. doi: https://doi.org/10.22616/erdev2017.16.n072

Fenchea, M. (2012). Design of hammer mills for optimum performance. Journal of Vibration and Control, 19 (14), 2100–2108. doi: https://doi.org/10.1177/1077546312455210

Akbari, M. J., Kazemi, S. R. (2020). Peridynamic Analysis of Cracked Beam Under Impact. Journal of Mechanics, 36 (4), 451–463. doi: https://doi.org/10.1017/jmech.2020.12

Tang, W. Y., He, Y. S., Zhang, S. K., Yuan, M. (2005). Dynamic buckling of cracked beams subject to axial impacting. 15th International Offshore and Polar Engineering Conference (ISOPE 2005), 354–359.

Georgiadis, H. G. (1987). Finite length crack moving in a viscoelastic strip under impact – I. Theory. Engineering Fracture Mechanics, 27 (5), 593–599. doi: https://doi.org/10.1016/0013-7944(87)90111-1

Candaş, A., Oterkus, E., İmrak, C. E. (2020). Dynamic Crack Propagation and Its Interaction With Micro-Cracks in an Impact Problem. Journal of Engineering Materials and Technology, 143 (1). doi: https://doi.org/10.1115/1.4047746

Akimune, Y., Akiba, T., Okamoto, Y., Hirosaki, N. (1994). Effect of Materials Properties on Spherical Particle Impact Damage for Ceramics. Journal of the Ceramic Society of Japan, 102 (1187), 653–657. doi: https://doi.org/10.2109/jcersj.102.653

Wang, D. K., Sun, L. T., Wei, J. P. (2019). Microstructure evolution and fracturing mechanism of coal under thermal shock. Rock and Soil Mechanics, 40 (2), 529.

Ohr, S. M. (1985). An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Materials Science and Engineering, 72 (1), 1–35. doi: https://doi.org/10.1016/0025-5416(85)90064-3

Zhou, Z.-G., Du, S.-Y., Wang, B. (2001). Investigation of anti-plane shear behavior of a Griffith crack in a piezoelectric material by using the non-local theory. International Journal of Fracture, 111 (2), 105–117. doi: https://doi.org/10.1023/A:1012201923151

Luo, H., Yang, R., Wang, Y., Yang, G., Li, C., An, C., Zhang, Y. (2021). Experimental Study on the Caustics of Moving Cracks and Elliptical Curvature under Impact Loading. Advances in Civil Engineering, 2021, 1–12. doi: https://doi.org/10.1155/2021/5524635

Phurkhao, P. (2017). Normal impact response of a saturated porous cylinder with a penny-shaped crack. Theoretical and Applied Fracture Mechanics, 87, 1–10. doi: https://doi.org/10.1016/j.tafmec.2016.09.008

Iskakov, R. M., Iskakova, A. M., Beisebekova, D. M., Maratbekov, A. R., Abdiraimov, M. U. (2015). Pat. No 29946 KZ. Hammer crushing and grinding device. published: 15.06.2015.

Iskakov, R. M., Isenov, S. S., Kubentaeva, G. K., Zaychko, G. A. (2021). Razrabotka udachnykh molotkov na osnove analiza teoreticheskikh issledovaniy obrazovaniya. Trudy universiteta, 4 (85), 54–60.

Warzecha, M., Michalczyk, J. (2020). Calculation of maximal collision force in kinematic chains based on collision force impulse. Journal of Theoretical and Applied Mechanics, 58 (2), 339–349. doi: https://doi.org/10.15632/jtam-pl/116580

Iskakov, R. M., Mamirbaeva, I. K., Gulyarenko, A. A., Silaev, M. Yu., Gusev, A. S. (2022). Improved Hammers for Crushers in Feed Production. Russian Engineering Research, 42 (10), 987–992. doi: https://doi.org/10.3103/s1068798x22100124

Sozontov, A. V., Lopatin, L. A. (2018). Investigation and optimization of the working process of the crusher grain percussion. Bulletin NGIEI, 6 (85), 27–36. Available at: https://cyberleninka.ru/article/n/issledovanie-i-optimizatsiya-rabochego-protsessa-drobilki-zerna-udarnogo-deystviya/viewer

Tumanova, M. I. (2016). Sovershenstvovanie izmel'chayuschikh rabochikh organov mashin po prigotovleniyu i razdache kormov. Molodoy ucheniy, 1 (105), 279–282. Available at: https://moluch.ru/archive/105/24774/

Ziganshin, B. G. (2004). Povyshenie effektivnosti tekhnicheskikh sredstv podgotovki kormov v zhivotnovodstve na osnove rasshireniya tekhnologicheskikh vozmozhnostey razrabotchikov. Kazan', 36.

Khalimov, R. Sh., Ayugin, N. P., Tatarov, L. G., Kundrotas, K. R. (2017). Modernization of feed cutter. International Research Journal, 11 (65), 79–83. doi: https://doi.org/10.23670/IRJ.2017.65.075

Vlasenko, D. A. (2019). Voprosy konstruktivno-tekhnologicheskikh parametrov protsessa drobleniya materialov v molotkovykh drobilkakh. Alchevsk, 23.

Iskenderov, R. R. (2017). Povyshenie effektivnosti protsessa sovershenstvovaniya zernovykh materialov v gorizontal'no-udarnoy drobilke. Stavropol', 190. Available at: https://xn--80aaak3h.xn--p1ai/files/sovettn/Iskenderov/disser_Iskenderov.pdf

Fedorenko, I. Ya., Smyshlyayev, A. A. (2015). Modeling of shock loading of feed material layer. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, 5 (127), 136–140. Available at: https://cyberleninka.ru/article/n/modelirovanie-udarnogo-nagruzheniya-sloya-kormovogo-materiala/viewer

Timofeyev, M. N., Frolov, V. Y., Morozova, N. Y. (2017). Analysis of technical means for grinding feeds and their classification. Polythematic Online Scientific Journal of Kuban State Agrarian University. doi: https://doi.org/10.21515/1990-4665-132-032

Kerimov, M., Belinskaia, I., Ognev, O. (2021). Convergent technologies as conceptual basis for formation of powder industry in agribusiness. Engineering for Rural Development. doi: https://doi.org/10.22616/erdev.2021.20.tf290

Karpin, V. Yu. (2001). Povyshenie effektivnosti tekhnologicheskoy linii proizvodstva sukhikh kombikormov sposobstvovalo modelirovaniyu protsessa raboty linii i rabochikh organov izgotovitelya Kosti sel'skokhozyaystvennykh zhivotnykh. Sankt-Peterburg, 195.

Lopatin, L. A. (2018). Povyshenie effektivnosti protsessa uluchsheniya kachestva za schet sovershenstvovaniya raboty organov molotkovoy drobilki. Kirov, 185.

Segura-Salazar, J., Barrios, G. P., Rodriguez, V., Tavares, L. M. (2017). Mathematical modeling of a vertical shaft impact crusher using the Whiten model. Minerals Engineering, 111, 222–228. https://doi.org/10.1016/j.mineng.2017.06.022

Kupchuk, I. M., Solona, O. V., Derevenko, I. A., Tverdokhlib, I. V. (2018). Verification of the Mathematical Model of the Energy Consumption Drive for Vibrating Disc Crusher. Inmateh-Agricultural Engineering, 55 (2), 111–118. Available at: http://repository.vsau.org/getfile.php/17249.pdf

Feng, F., Shi, J., Yang, J., Ma, J. (2022). Correlation between the Angle of the Guide Plate and Crushing Performance in Vertical Shaft Crushers. Shock and Vibration, 2022, 1–8. doi: https://doi.org/10.1155/2022/9991855

Al-Khasawneh, Y. (2021). Development and testing of a novel mathematical-physical model for the design of ring armor for the vertical shaft impact crushers. Minerals Engineering, 170, 106994. doi: https://doi.org/10.1016/j.mineng.2021.106994

Voyakin, S. N. (2019). Nauchnye razrabotki i razrabotka tekhnologiy i tekhnicheskikh sredstv podgotovki granulirovannykh kormov dlya ptitsy. Blagoveschensk, 308.

Iskakov, R. М., Issenov, S. S., Iskakova, A. M., Halam, S., Beisebekova, D. M. (2013). Heat-and-Moisture Transfer at the Feed Meal Particles Drying and Grinding. Life Science Journal, 10 (12s), 497–502. Available at: http://www.lifesciencesite.com/lsj/life1012s/083_22175life1012s_497_502.pdf

Iskakov, R. M., Iskakova, A. M., Issenov, S. S., Beisebekova, D. M., Khaimuldinova, A. K. (2019). Technology of Multi-stage Sterilization of Raw Materials with the Production of Feed Meal of High Biological Value. Journal of Pure and Applied Microbiology, 13 (1), 307–312. doi: https://doi.org/10.22207/jpam.13.1.33

Alpeissov, Y., Iskakov, R., Issenov, S., Ukenova А. (2022). Obtaining a formula describing the interaction of fine particles with an expanding gas flow in a fluid layer. Eastern-European Journal of Enterprise Technologies, 2 (1 (116)), 87–97. doi: https://doi.org/10.15587/1729-4061.2022.255258

Issenov, S., Iskakov, R., Tergemes, K., Issenov, Z. (2022). Development of mathematical description of mechanical characteristics of integrated multi-motor electric drive for drying plant. Eastern-European Journal of Enterprise Technologies, 1 (8 (115)), 46–54. doi: https://doi.org/10.15587/1729-4061.2021.251232

Abilzhanuly, T. (2019). Method of Fineness Adjustment of Shredded Particles of Stem Fodder in Open-type Machines. EurAsian Journal of BioSciences, 13 (1), 625–631.

Zhbanova, E. V. (2007). Intensifikatsiya protsessa udaleniya vlagi pri razrushenii krupnykh materialov udarom. Ivanovo, 20.

Zhbanova, E. V., Guyumdzhyan, P. P. (2004). Razrushenie krupnykh materialov udarom. Vestnik nauchnogo i promyshlennogo obschestva, 7, 85–88.

Baygereev, S. R. (2019). Obosnovanie parametrov i sozdanie konstruktsii rotorno-vibratsionnogo izmel'chitelya s otrabotkoy tekhnologii izgotovleniya. Ust'-Kamenogorsk, 172.

Tikhonov, E. A., Karpin, V. Yu. (2005). Obzor sovremennykh tekhnologicheskikh liniy po prigotovleniyu myasokostnoy muki. Elektronniy zhurnal "Issledovano v Rossii", 497–508. Available at: https://cyberleninka.ru/article/n/obzor-sovremennyh-tehnologicheskih-liniy-po-prigotovleniyu-myasokostnoy-muki

Pavlov, I. N., Kunichan, V. A., Kosmina, I. V. (2008). Technology of Thermo-Hydro Grinding when Drying Non-Rigid Mass in Blade Mixer. Vestnik TGTU, 14 (3), 630–631. Available at: https://cyberleninka.ru/article/n/tehnologiya-termovlazhnostnogo-izmelcheniya-pri-sushke-nezhestkih-mass-v-lopastnom-smesitele

Savinykh, P., Isupov, A., Ivanov, I., Ivanov, S. (2021). Issledovanie tsentrobezhno-rotornogo izmel'chitelya furazhnogo zerna. Inzheneriya dlya razvitiya sel'skikh rayonov, 20, 205–211.

Ospanov, A. A. (1992). Sovershenstvovanie protsessov i oborudovaniya dlya izmel'cheniya pischevogo i kormovogo syr'ya. Moscow, 49.

Chernyaev, L. A., Patalainen, L. S. (2014). The development of technology for feed meal from biomass worms. Modern scientific researches and innovations, 10. Available at: https://web.snauka.ru/en/issues/2014/10/38792

Titov, I. N., Usoev, V. M. (2012). Vermiculture as renewable source of animal protein from organic waste. Tomsk State University Journal of Biology, 2 (18), 74–80. Available at: https://cyberleninka.ru/article/n/vermikultura-kak-vozobnovlyaemyy-istochnik-zhivotnogo-belka-iz-organicheskih-othodov/viewer

Ruchin, A. B. (2013). Primenenie metoda vermikul'tivatsii dlya biorazlozheniya tverdykh bytovykh otkhodov. Molodoy ucheniy, 3 (50), 168–171.

Doroszuk, B., Król, R. (2022). Industry Scale Optimization: Hammer Crusher and DEM Simulations. Minerals, 12 (2), 244. doi: https://doi.org/10.3390/min12020244

Tian, H., Wang, H., Huang, T., Wang, D., Liu, F., Han, B. (2018). Design of Combination Sieve for Hammer Feed Mill to Improve Crushing Performance. Transactions of the Chinese Society of Agricultural Engineering, 34 (22), 45–52. doi: https://doi.org/10.11975/j.issn.1002-6819.2018.22.006

Sugirbay, A., Hu, G.-R., Chen, J., Mustafin, Z., Muratkhan, M., Iskakov, R., Chen, Y. et al. (2022). A Study on the Calibration of Wheat Seed Interaction Properties Based on the Discrete Element Method. Agriculture, 12 (9), 1497. doi: https://doi.org/10.3390/agriculture12091497

Verma, H. R., Singh, K. K., Basha, S. M. (2018). Effect of Milling Parameters on the Concentration of Copper Content of Hammer-Milled Waste PCBs: A Case Study. Journal of Sustainable Metallurgy, 4 (2), 187–193. doi: https://doi.org/10.1007/s40831-018-0179-z

Munkhbayar, B., Bayaraa, N., Rehman, H., Kim, J., Chung, H., Jeong, H. (2012). Grinding characteristic of multi-walled carbon nanotubes-alumina composite particle. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27 (6), 1009–1013. doi: https://doi.org/10.1007/s11595-012-0590-4

Yang, J. H., Fang, H. Y., Luo, M. (2015). Load and wear experiments on the impact hammer of a vertical shaft impact crusher. IOP Conference Series: Materials Science and Engineering, 103, 012041. doi: https://doi.org/10.1088/1757-899x/103/1/012041

Adigamov, N. R., Shaikhutdinov, R. R., Gimaltdinov, I. H., Akhmetzyanov, R. R., Basyrov, R. S. (2020). Determining the residual resource of the hammer crushers’ rotor bearings. BIO Web of Conferences, 17, 00239. doi: https://doi.org/10.1051/bioconf/20201700239

Hong, S., Kim, S. (2017). Analysis of simulation result by digital filtering technique and improvement of hammer crusher. International Journal of Mineral Processing, 169, 168–175. doi: https://doi.org/10.1016/j.minpro.2017.11.004

Sauk, H., Selvi, K. C. (2018). Factors Affecting Energy Consumption in Hammer Mills. Scientific Papers-Series A-Agronomy, 61 (1), 392–396. Available at: https://www.cabdirect.org/cabdirect/abstract/20203093697

Kobrin, Y., Vlasov, A., Shevchenko, I. (2020). The Effect Of Rotor Balance During Crushing Of Intermetallic Compounds In Hammer Crushers. METAL Conference Proeedings. doi: https://doi.org/10.37904/metal.2020.3617

Klushantsev, V. V., Kosarev, A. I., Muyzemnek, Yu. A. (1990). Drobilki. Konstruirovanie, raschet, osobennosti ekspluatatsii. Moscow: Mashinostroenie, 231.

Mel'nikov, S. V. (1978). Mekhanizatsiya i avtomatizatsiya zhivotnovodcheskikh ferm. Moscow: Kolos, 106.

German Pat. No. 927424. Feed chopper with hammers (1954).

Filatov, M. I., Bab'eva, M. I., Petrov, A. A. (2005). Pat. No. RU2270058. Hammer crusher hammer. published: 20.10.2005.

Verigin, Yu. A., Zaitsev, D. O. (2015). Pat. No. RU2567512. Hammer crusher hammer. published: 11.10.2015.

Grinberg, P. B., Morokov, S. P. (2010). Pat. No. RU2397022. Crusher hammer. published: 08.20.2010.

Shegelman, I. R., Aminov, V. N., Kameneva, E. E., Vasiliev, A. S. (2014). Pat. No. RU141049. Hammer crusher hammer. published: 27.05.2014.

Konovodov, V. V., Retyunsky, O. Yu., Yudina, K. N. (2007). Pat. No. RU65402. Crusher hammer. published: 08.10.2007.

Eliseev, M. S., Rybalkin, D. A. (2016). Pat. No. RU166614. Crusher hammer. published: 12.10.2016.

Komissarov, A. P., Lagunova, Yu. A., Shestakov, V. S., Brusova, O. M. (2012). Pat. No. RU122591. Hammer crusher hammer. published: 12.10.2012.

Gao, J. (2013). Pat. No. CN102909113-A. Hammer type crusher has hammer base portion that is provided with a hard alloy embedded in groove portion of hammer base portion. published: 02.06.2013.

Li, M., Li, D., Li, J., Li, X., Zhou, M. (2021). Pat. No. CN213222470-U. High-efficiency wear-resisting type crusher impact plate hammer, has first hammer head whose top part is connect-ed with striking plate by bolt, and second hammer head whose bottom part is de-tachably connected with striking plate by bolt. published: 18.05.2021.

Lin, W., You, X. (2021). Anti-impact crusher composite plate hammer, has ro-tating shaft whose outer wall is provided with rotor main body, and hammer main body whose lower end is provided with fixing rod that is embedded in in- ner wall of clamping groove. Pat. No. CN212975345-U. published: 04.16.2021.

Iskakov, R. M., Muldasheva, M. G. (2020). Pat. No. 4754KZ. Hammer for crushing and grinding. published: 05.03.2020, Bul. No. 9.

Maratbekov, A. R., Iskakov, R. M. (2020). Pat. No. 5269KZ. Hammer for Crushing and Grinding. published: 07.08.2020.

Iskakov, R. M. (2021). Pat. No. 6469KZ. Toothed Comb Hammer of Hammer Crusher. published: 01.10.2021.

Trung, D. D., Nguyen, N.-T., Tien, D. H., Dang, H. L. (2021). A research on multi-objective optimization of the grinding process using segmented grinding wheel by taguchi-dear method. EUREKA: Physics and Engineering, 1, 67–77. doi: https://doi.org/10.21303/2461-4262.2021.001612

Trung, D. D., Nguyen, N.-T., Van Duc, D. (2021). Study On Multi-Objective Optimization Of The Turning Process Of En 10503 Steel By Combination Of Taguchi Method And Moora Technique. EUREKA: Physics and Engineering, 2, 52–65. doi: https://doi.org/10.21303/2461-4262.2020.001414

Iskakov, R. M. (2021). Pat. No. 6470KZ. Toothed-rod Hammer of a Hammer Crusher. published: 01.10.2021.

Maratbekov, A. R., Iskakov, R. M. (2020). Pat. No. 5325KZ. Hammer Crusher. published: 28.08.2020.

Mulesa, O., Snytyuk, V., Myronyuk, I. (2019). Optimal alternative selection models in a multi-stage decision-making process. EUREKA: Physics and Engineering, 6, 43–50. doi: https://doi.org/10.21303/2461-4262.2019.001005

Maratbekov, A. R., Iskakov, R. M., Smailova, A. K. (2021). Pat. No 5793KZ. Line for the Production of Bone Feed Meal from Waste Bone Raw Materials of Farm Animals, Birds and Fish. published: 06.08.2021.

Impact elements of feed grinder: a review

👁 193
⬇ 195
Published
2023-03-22
How to Cite
Iskakov, R., Issenov, S., & Kubentaeva, G. (2023). Impact elements of feed grinder: a review. EUREKA: Physics and Engineering, (2), 121-148. https://doi.org/10.21303/2461-4262.2023.002820
Section
Engineering

Most read articles by the same author(s)