• Oksana Chala Kharkiv National University of Radio Electronics
  • Lyudmyla Novikova V. N. Karazin Kharkiv National University
  • Larysa Chernyshova Kharkiv State University of Food Technology and Trade V. N. Karazin Kharkiv National University
Keywords: e-commerce, recommendation system, temporal rules, shilling attack, feedback


The problem of shilling attacks detecting in e-commerce systems is considered. The purpose of such attacks is to artificially change the rating of individual goods or services by users in order to increase their sales. A method for detecting shilling attacks based on a comparison of weighted temporal rules for the processes of selecting objects with explicit and implicit feedback from users is proposed. Implicit dependencies are specified through the purchase of goods and services. Explicit feedback is formed through the ratings of these products. The temporal rules are used to describe hidden relationships between the choices of user groups at two consecutive time intervals. The method includes the construction of temporal rules for explicit and implicit feedback, their comparison, as well as the formation of an ordered subset of temporal rules that capture potential shilling attacks. The method imposes restrictions on the input data on sales and ratings, which must be ordered by time or have timestamps. This method can be used in combination with other approaches to detecting shilling attacks. Integration of approaches allows to refine and supplement the existing attack patterns, taking into account the latest changes in user priorities.


Download data is not yet available.

Author Biographies

Oksana Chala, Kharkiv National University of Radio Electronics

Department of Information Control Systems

Lyudmyla Novikova, V. N. Karazin Kharkiv National University

Department of International Relations, International Information and Security

Larysa Chernyshova, Kharkiv State University of Food Technology and Trade V. N. Karazin Kharkiv National University

Department of International Economics

Department of International Relations, International Information and Security


Aggarwal, C. C. (2016). Recommender Systems. Springer. doi:

Gunes, I., Kaleli, C., Bilge, A., Polat, H. (2012). Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 42 (4), 767–799. doi:

Mobasher, B., Burke, R., Bhaumik, R., Williams, C. (2007). Toward trustworthy recommender systems. ACM Transactions on Internet Technology, 7 (4). doi:

Wu, Z., Cao, J., Mao, B., Wang, Y. (2011). Semi-SAD: applying semi-supervised learning to shilling attack detection. Proceedings of the fifth ACM conference on Recommender systems, 289–292. doi:

Burke, R., Mobasher, B., Bhaumik, R. (2005). Limited knowledge shilling attacks in collaborative filtering systems. Proceedings of the 3rd IJCAI Workshop in Intelligent Techniques for Personalization, 1–36.

Wang, Y., Qian, L., Li, F., Zhang, L. (2018). A Comparative Study on Shilling Detection Methods for Trustworthy Recommendations. Journal of Systems Science and Systems Engineering, 27 (4), 458–478. doi:

Wang, Y., Zhang, L., Tao, H., Wu, Z., Cao, J. (2015). A comparative study of shilling attack detectors for recommender systems. 2015 12th International Conference on Service Systems and Service Management (ICSSSM). doi:

Tong, C., Yin, X., Li, J., Zhu, T., Lv, R., Sun, L., Rodrigues, J. J. P. C. (2018). A shilling attack detector based on convolutional neural network for collaborative recommender system in social aware network. The Computer Journal, 61 (7), 949–958. doi:

Patel, K., Thakkar, A., Shah, C., Makvana, K. (2016). A State of Art Survey on Shilling Attack in Collaborative Filtering Based Recommendation System. Smart Innovation, Systems and Technologies, 377–385. doi:

Xia, H., Fang, B., Gao, M., Ma, H., Tang, Y., Wen, J. (2015). A novel item anomaly detection approach against shilling attacks in collaborative recommendation systems using the dynamic time interval segmentation technique. Information Sciences, 306, 150–165. doi:

Levykin, V., Chala, O. (2018). Development of a method for the probabilistic inference of sequences of a business process activities to support the business process management. Eastern-European Journal of Enterprise Technologies, 5 (3 (95)), 16–24. doi:

Chalyi, S., Pribylnova, I. (2019). The method of constructing recommendations online on the temporal dynamics of user interests using multilayer graph. EUREKA: Physics and Engineering, 3, 13–19. doi:

forming recommendations using temporal constraints in a situation of cyclic cold start of the recommender system. EUREKA: Physics and Engineering, 4, 34–40. doi:

Kalynychenko, O., Chalyi, S., Bodyanskiy, Y., Golian, V., Golian, N. (2013). Implementation of search mechanism for implicit dependences in process mining. 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS). doi:

Zajac, Z. (2017). Goodbooks-10k: a new dataset for book recommendations. FastML. Available at:

Kuchuk, N., Mozhaiev, O., Mozhaiev, M., Kuchuk, H. (2017). Method for calculating of R-learning traffic peakedness. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi:

👁 569
⬇ 311
How to Cite
Chala, O., Novikova, L., & Chernyshova, L. (2019). METHOD FOR DETECTING SHILLING ATTACKS IN E-COMMERCE SYSTEMS USING WEIGHTED TEMPORAL RULES. EUREKA: Physics and Engineering, (5), 29-36.
Computer Science