ORTHODONTIC TREATMENT WITH Nd-Fe-B MAGNETS
Аннотация
The aim. The development of methodology for experimental and theoretical assessment of interaction forces between magnets in an orthodontic apparatus, the test of corrosion resistance of protective oxide and nitride coatings deposited on Nd-Fe-B magnets surface.
Materials and methods. The Nd-Fe-B permanent magnets with saturation magnetization Ms≈1100 G and bilayer ZrN / ZrO2 coatings were used. To experimental measure of interaction forces between magnets the device was assembled on the base of analytical balance. The distance between the magnets was varied using non-magnetic plates. The ZrO2 and ZrN coatings have been analyzed for their corrosion properties in 0.9 % NaCl quasi-physiological solution.
Results. An original method was proposed for calculating of magnetic interaction forces for materials with high magnetic anisotropy, which has good agreement with experimental measurement of forces. The theoretical model takes into account the size of the magnets and the mutual influence of their opposite faces. An increase of corrosion resistance of magnetic materials can be provided by zirconium oxide or nitride compounds, which contribute to inhibition of electrochemical corrosion of Nd-Fe-B magnets.
Conclusions. A method for calculating of interaction forces between permanent magnets, which are used for correction of malocclusion in orthodontic, has been developed. The passivation of the Nd-Fe-B permanent magnets surface can be achieved by applying of bilayer ZrN / ZrO2 coating.
Скачивания
Литература
Proffit, W., Fields, H. (2012). Contemporary Orthodontics. Elsevier, 262–372. Available at: https://www.elsevier.com/books/contemporary-orthodontics/proffit/978-0-323-08317-1
Wiechmann, D. (2003). A New Bracket System for Lingual Orthodontic Treatment. Journal of Orofacial Orthopedics, 64 (5), 372–388. doi: http://doi.org/10.1007/s00056-003-0325-4
Prasad, M., Manoj-Kumar, M., Gowri-Sankar, S., Chaitanya, N., Vivek-Reddy, G., Venkatesh, N. (2016). Clinical evaluation of neodymium-iron-boron (Ne2Fe14B) rare earth magnets in the treatment of mid line diastemas. Journal of Clinical and Experimental Dentistry, 8, 164–171. doi: http://doi.org/10.4317/jced.52352
Tomizuka, R., Kanetaka, H., Shimizu, Y., Suzuki, A., Igarashi, K., Mitani, H. (2006). Effects of Gradually Increasing Force Generated by Permanent Rare Earth Magnets for Orthodontic Tooth Movement. The Angle Orthodontist, 76 (6), 1004–1009. doi: http://doi.org/10.2319/071805-237
Li, L. C. F., Wong, R. W. K., King, N. M. (2008). Orthodontic traction of impacted canine using magnet: a case report. Cases Journal, 1 (1), 382. doi: http://doi.org/10.1186/1757-1626-1-382
Yin, Z. P., Guo, L., Wang, T. Y., Lv, S. L., Che, Y. M. (2013). Effect of magnetic field on the proliferation of human periodontal ligament fibroblasts. Contemporary Medicine, 19, 10–11.
Showkatbakhsh, R., Jamilian, A., Showkatbakhsh, M. (2010). The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World Journal of Orthodontics, 11, 52–56. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21490989
Darendeliler, M. A. (2006). Use of Magnetic Forces in Growth Modification. Seminars in Orthodontics, 12 (1), 41–51. doi: http://doi.org/10.1053/j.sodo.2005.10.008
Ravindran, K. V. (2011). Role of magnets in orthodontics—a review. Indian Journal of Dentistry, 2 (4), 147–155. doi: http://doi.org/10.1016/s0975-962x(11)60036-1
Bhat, V., Shenoy, Kk., Premkumar, P. (2013). Magnets in dentistry. Archives of Medicine and Health Sciences, 1 (1), 73–79. doi: http://doi.org/10.4103/2321-4848.113587
Darendeliler, M. A., Darendeliler, A., Mandurino, M. (1997). Clinical application of magnets in orthodontics and biological implications: a review. The European Journal of Orthodontics, 19 (4), 431–442. doi: http://doi.org/10.1093/ejo/19.4.431
Linder-Aronson, A., Lindskog, S., Rygh, P. (1992). Orthodontic magnets: effects on gingival epithelium and alveolar bone in monkeys. The European Journal of Orthodontics, 14 (4), 255–272. doi: http://doi.org/10.1093/ejo/14.4.255
Singh, D., Jain, U., Prakash, A. (2016). Magnets in orthodontics. Journal of Applied Dental and Medical Sciences, 2 (2), 128–134. Available at: http://www.joadms.org/home/article_abstract/120
Bondemark, L., Kurol, J., Larsson, A. (1998). Long-term effect of orthodontic magnets on human buccal mucosa – a clinical, histological and immunohistochemical study. European Journal of Orthodontics, 20 (3), 211–218. doi: http://doi.org/10.1093/ejo/20.3.211
Sharma, N. S., Kamble, R., Shrivastav, S., Sharma, P. (2015). The Use of Magnets in Orthodontics. World Journal of Dentistry, 6 (1), 45–48. doi: http://doi.org/10.5005/jp-journals-10015-1311
Samofalov, V. N., Ravlik, A. G., Belozorov, D. P., Avramenko, B. A. (2004). Generation of strong inhomogeneous stray fields by high-anisotropy permanent magnets. Journal of Magnetism and Magnetic Materials, 281 (2-3), 326–335. doi: http://doi.org/10.1016/j.jmmm.2004.04.122
Samofalov, V. N., Belozorov, D. P., Ravlik, A. G. (2006). Optimization of systems of permanent magnets. The Physics of Metals and Metallography, 102 (5), 494–505. doi: http://doi.org/10.1134/s0031918x06110068
Samofalov, V. N., Belozorov, D. P., Ravlik, A. G. (2013). Strong stray fields in systems of giant magnetic anisotropy magnets. Physics-Uspekhi, 56 (3), 269–288. doi: http://doi.org/10.3367/ufne.0183.201303e.0287
Kitsugi, A., Okuno, O., Nakano, T., Hamanaka, H., Kuroda, T. (1992). The corrosion behavior of Nd2Fe14B and SmCo5 magnets. Dental Materials Journal, 11, 119–129. doi: http://doi.org/10.4012/dmj.11.119
Taran, A., Garkusha, I., Taran, V., Muratov, R., Starikov, V., Baturin, A. et. al. (2018). Structure and properties of nanostructured ZrN coatings obtained by vacuum-arc evaporation using RF discharge. Nanotechnology Perceptions, 14 (3), 167–177. doi: http://doi.org/10.4024/n15ta18a.ntp.14.03
Starikov, V. V., Starikova, S. L., Mamalis, A. G., Lavrynenko, S. N. (2016). Features of medical implant passivation using anodic oxide films. Journal of Biological Physics and Chemistry, 16 (2), 90–94. doi: http://doi.org/10.4024/08st16a.jbpc.16.02
Bondemark, L. (2000). A comparative analysis of distal maxillary molar movement produced by a new lingual intra-arch Ni-Ti coil appliance and a magnetic appliance. The European Journal of Orthodontics, 22 (6), 683–695. doi: http://doi.org/10.1093/ejo/22.6.683
Copyright (c) 2020 Valerii Kutsevlyak, Vladyslav Starikov , Volodymyr Samofalov , Vadym Starikov

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Наше издание использует положения об авторских правах CREATIVE COMMONS для журналов открытого доступа.
Авторы, которые публикуются в этом журнале, соглашаются со следующими условиями:
1. Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылкой на авторов оригинальной работы и первую публикацию работы в этом журнале.
2. Авторы имеют право заключать самостоятельные дополнительные соглашения, которые касаются неэксклюзивного распространения работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале .
