ORTHODONTIC TREATMENT WITH Nd-Fe-B MAGNETS

  • Valerii Kutsevlyak Kharkiv Medical Academy of Postgraduate Education
  • Vladyslav Starikov Kharkiv Medical Academy of Postgraduate Education
  • Volodymyr Samofalov National Technical University "Kharkiv Polytechnic Institute"
  • Vadym Starikov National Technical University "Kharkiv Polytechnic Institute"

Аннотация

The aim. The development of methodology for experimental and theoretical assessment of interaction forces between magnets in an orthodontic apparatus, the test of corrosion resistance of protective oxide and nitride coatings deposited on Nd-Fe-B magnets surface.

Materials and methods. The Nd-Fe-B permanent magnets with saturation magnetization Ms≈1100 G and bilayer ZrN / ZrO2 coatings were used. To experimental measure of interaction forces between magnets the device was assembled on the base of analytical balance. The distance between the magnets was varied using non-magnetic plates. The ZrO2 and ZrN coatings have been analyzed for their corrosion properties in 0.9 % NaCl quasi-physiological solution.

Results. An original method was proposed for calculating of magnetic interaction forces for materials with high magnetic anisotropy, which has good agreement with experimental measurement of forces. The theoretical model takes into account the size of the magnets and the mutual influence of their opposite faces. An increase of corrosion resistance of magnetic materials can be provided by zirconium oxide or nitride compounds, which contribute to inhibition of electrochemical corrosion of Nd-Fe-B magnets.

Conclusions. A method for calculating of interaction forces between permanent magnets, which are used for correction of malocclusion in orthodontic, has been developed. The passivation of the Nd-Fe-B permanent magnets surface can be achieved by applying of bilayer ZrN / ZrO2 coating.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Valerii Kutsevlyak, Kharkiv Medical Academy of Postgraduate Education

Department of Orthopedic Dentistry No. 2

Vladyslav Starikov , Kharkiv Medical Academy of Postgraduate Education

Department of Pediatric Dentistry, Orthodontics and Implantology

Volodymyr Samofalov , National Technical University "Kharkiv Polytechnic Institute"

Department of Metals and Semiconductors Physics

Vadym Starikov, National Technical University "Kharkiv Polytechnic Institute"

Department of Technical Cryophysics

Литература

Proffit, W., Fields, H. (2012). Contemporary Orthodontics. Elsevier, 262–372. Available at: https://www.elsevier.com/books/contemporary-orthodontics/proffit/978-0-323-08317-1

Wiechmann, D. (2003). A New Bracket System for Lingual Orthodontic Treatment. Journal of Orofacial Orthopedics, 64 (5), 372–388. doi: http://doi.org/10.1007/s00056-003-0325-4

Prasad, M., Manoj-Kumar, M., Gowri-Sankar, S., Chaitanya, N., Vivek-Reddy, G., Venkatesh, N. (2016). Clinical evaluation of neodymium-iron-boron (Ne2Fe14B) rare earth magnets in the treatment of mid line diastemas. Journal of Clinical and Experimental Dentistry, 8, 164–171. doi: http://doi.org/10.4317/jced.52352

Tomizuka, R., Kanetaka, H., Shimizu, Y., Suzuki, A., Igarashi, K., Mitani, H. (2006). Effects of Gradually Increasing Force Generated by Permanent Rare Earth Magnets for Orthodontic Tooth Movement. The Angle Orthodontist, 76 (6), 1004–1009. doi: http://doi.org/10.2319/071805-237

Li, L. C. F., Wong, R. W. K., King, N. M. (2008). Orthodontic traction of impacted canine using magnet: a case report. Cases Journal, 1 (1), 382. doi: http://doi.org/10.1186/1757-1626-1-382

Yin, Z. P., Guo, L., Wang, T. Y., Lv, S. L., Che, Y. M. (2013). Effect of magnetic field on the proliferation of human periodontal ligament fibroblasts. Contemporary Medicine, 19, 10–11.

Showkatbakhsh, R., Jamilian, A., Showkatbakhsh, M. (2010). The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World Journal of Orthodontics, 11, 52–56. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21490989

Darendeliler, M. A. (2006). Use of Magnetic Forces in Growth Modification. Seminars in Orthodontics, 12 (1), 41–51. doi: http://doi.org/10.1053/j.sodo.2005.10.008

Ravindran, K. V. (2011). Role of magnets in orthodontics—a review. Indian Journal of Dentistry, 2 (4), 147–155. doi: http://doi.org/10.1016/s0975-962x(11)60036-1

Bhat, V., Shenoy, Kk., Premkumar, P. (2013). Magnets in dentistry. Archives of Medicine and Health Sciences, 1 (1), 73–79. doi: http://doi.org/10.4103/2321-4848.113587

Darendeliler, M. A., Darendeliler, A., Mandurino, M. (1997). Clinical application of magnets in orthodontics and biological implications: a review. The European Journal of Orthodontics, 19 (4), 431–442. doi: http://doi.org/10.1093/ejo/19.4.431

Linder-Aronson, A., Lindskog, S., Rygh, P. (1992). Orthodontic magnets: effects on gingival epithelium and alveolar bone in monkeys. The European Journal of Orthodontics, 14 (4), 255–272. doi: http://doi.org/10.1093/ejo/14.4.255

Singh, D., Jain, U., Prakash, A. (2016). Magnets in orthodontics. Journal of Applied Dental and Medical Sciences, 2 (2), 128–134. Available at: http://www.joadms.org/home/article_abstract/120

Bondemark, L., Kurol, J., Larsson, A. (1998). Long-term effect of orthodontic magnets on human buccal mucosa – a clinical, histological and immunohistochemical study. European Journal of Orthodontics, 20 (3), 211–218. doi: http://doi.org/10.1093/ejo/20.3.211

Sharma, N. S., Kamble, R., Shrivastav, S., Sharma, P. (2015). The Use of Magnets in Orthodontics. World Journal of Dentistry, 6 (1), 45–48. doi: http://doi.org/10.5005/jp-journals-10015-1311

Samofalov, V. N., Ravlik, A. G., Belozorov, D. P., Avramenko, B. A. (2004). Generation of strong inhomogeneous stray fields by high-anisotropy permanent magnets. Journal of Magnetism and Magnetic Materials, 281 (2-3), 326–335. doi: http://doi.org/10.1016/j.jmmm.2004.04.122

Samofalov, V. N., Belozorov, D. P., Ravlik, A. G. (2006). Optimization of systems of permanent magnets. The Physics of Metals and Metallography, 102 (5), 494–505. doi: http://doi.org/10.1134/s0031918x06110068

Samofalov, V. N., Belozorov, D. P., Ravlik, A. G. (2013). Strong stray fields in systems of giant magnetic anisotropy magnets. Physics-Uspekhi, 56 (3), 269–288. doi: http://doi.org/10.3367/ufne.0183.201303e.0287

Kitsugi, A., Okuno, O., Nakano, T., Hamanaka, H., Kuroda, T. (1992). The corrosion behavior of Nd2Fe14B and SmCo5 magnets. Dental Materials Journal, 11, 119–129. doi: http://doi.org/10.4012/dmj.11.119

Taran, A., Garkusha, I., Taran, V., Muratov, R., Starikov, V., Baturin, A. et. al. (2018). Structure and properties of nanostructured ZrN coatings obtained by vacuum-arc evaporation using RF discharge. Nanotechnology Perceptions, 14 (3), 167–177. doi: http://doi.org/10.4024/n15ta18a.ntp.14.03

Starikov, V. V., Starikova, S. L., Mamalis, A. G., Lavrynenko, S. N. (2016). Features of medical implant passivation using anodic oxide films. Journal of Biological Physics and Chemistry, 16 (2), 90–94. doi: http://doi.org/10.4024/08st16a.jbpc.16.02

Bondemark, L. (2000). A comparative analysis of distal maxillary molar movement produced by a new lingual intra-arch Ni-Ti coil appliance and a magnetic appliance. The European Journal of Orthodontics, 22 (6), 683–695. doi: http://doi.org/10.1093/ejo/22.6.683


Просмотров аннотации: 54
Загрузок PDF: 34
Опубликован
2020-05-25
Как цитировать
Kutsevlyak, V., Starikov , V., Samofalov , V., & Starikov, V. (2020). ORTHODONTIC TREATMENT WITH Nd-Fe-B MAGNETS . EUREKA: Health Sciences, (3), 54-62. https://doi.org/10.21303/2504-5679.2020.001316
Выпуск
Раздел
Medicine and Dentistry