INTERRELATIONS BETWEEN GROWTH DIFFERENTIATION FACTOR 15, P-SELECTIN AND GALECTIN-3 AND CLINICAL COURSE IN PATIENTS WITH ARTERIAL HYPERTENSION AND TYPE 2 DIABETES MELLITUS
Аннотация
The aim of our study was to determine the base levels of Growth Differentiation Factor 15, P-selectin and Galectin-3 in blood plasma in patients with AH and T2DM and to assess their association with the diseases clinical course.
Materials and methods. A total of 121 patients were included in our study (60 female and 61 male, mean age 64.7±10.6 years, with AH and/or T2DM).
Patients were divided into three groups: 1st group with AH only (51 patient), 2nd group with AH and T2DM (57 patients) and 3rd group with T2DM only (13 patients, control group). GDF-15, Galectin-3 and P-selectin tests were performed using standard enzyme-linked immunosorbent assay kits (ELISA).
Results. Compared with AH without T2DM and T2DM only groups, AH with T2DM group had a statistically significant higher level of GDF-15. Grade 3 hypertension group had a significantly lower level of GDF-15 compared with Grade 1&2 hypertension groups. P-selectin mean level was significantly higher in Grade 3 hypertension group GDF-15 compared with Grade 1&2 hypertension groups. We observed weak correlation between Galectin-3 and GDF-15 in blood plasma, which was confirmed by linear regression analysis.
Conclusions. A combination of hypertension and type 2 diabetes mellitus revealed a significant increase of GDF-15 levels in compare with patients with only hypertension or type 2 diabetes mellitus, which may be due to a greater response to oxidative stress and low-intensity systemic inflammation.
P-selectin mean level was higher in patients with grade 3 hypertension, which reflects a greater platelet activation as a part of the systemic inflammatory response.
Galectin-3 mean level was higher in patients with stage 3 hypertension compared with patients with stages 1 and 2 due to possibly more pronounced fibrosis progression.
Скачивания
Литература
Ndrepepa, G. (2019). Myeloperoxidase – A bridge linking inflammation and oxidative stress with cardiovascular disease. Clinica Chimica Acta, 493, 36–51. doi: http://doi.org/10.1016/j.cca.2019.02.022
Santos, H. O., Kones, R., Rumana, U., Earnest, C. P., Izidoro, L. F. M., Macedo, R. C. O. (2019). Lipoprotein(a): Current Evidence for a Physiologic Role and the Effects of Nutraceutical Strategies. Clinical Therapeutics, 41 (9), 1780–1797. doi: http://doi.org/10.1016/j.clinthera.2019.06.002
Krintus, M., Kozinski, M., Kubica, J., Sypniewska, G. (2014). Critical appraisal of inflammatory markers in cardiovascular risk stratification. Critical Reviews in Clinical Laboratory Sciences, 51 (5), 263–279. doi: http://doi.org/10.3109/10408363.2014.913549
Wesseling, M., Poel, J. H. C., Jager, S. C. A. (2020). Growth differentiation factor 15 in adverse cardiac remodelling: from biomarker to causal player. ESC Heart Failure, 7 (4), 1488–1501. doi: http://doi.org/10.1002/ehf2.12728
Barale, C., Russo, I. (2020). Influence of Cardiometabolic Risk Factors on Platelet Function. International Journal of Molecular Sciences, 21 (2), 623. doi: http://doi.org/10.3390/ijms21020623
Zhong, X., Qian, X., Chen, G., Song, X. (2019). The role of galectin-3 in heart failure and cardiovascular disease. Clinical and Experimental Pharmacology and Physiology, 46 (3), 197–203. doi: http://doi.org/10.1111/1440-1681.13048
Di Gregoli, K., Somerville, M., Bianco, R., Thomas, A. C., Frankow, A., Newby, A. C. et. al. (2020). Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 40 (6), 1491–1509. doi: http://doi.org/10.1161/atvbaha.120.314252
Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M. et. al. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal, 39 (33), 3021–3104. doi: http://doi.org/10.1093/eurheartj/ehy339
Introduction: Standards of Medical Care in Diabetes – 2019. (2018). Diabetes Care, 42 (Supplement 1), S1–S2. doi: http://doi.org/10.2337/dc19-sint01
Whelton, P. K., Carey, R. M. (2018). The 2017 American College of Cardiology/American Heart Association Clinical Practice Guideline for High Blood Pressure in Adults. JAMA Cardiology, 3 (4), 352. doi: http://doi.org/10.1001/jamacardio.2018.0005
Bonaterra, G. A., Zügel, S., Thogersen, J., Walter, S. A., Haberkorn, U., Strelau, J., Kinscherf, R. (2012). Growth Differentiation Factor‐15 Deficiency Inhibits Atherosclerosis Progression by Regulating Interleukin‐6–Dependent Inflammatory Response to Vascular Injury. Journal of the American Heart Association, 1 (6). doi: http://doi.org/10.1161/jaha.112.002550
Wang, J., Wei, L., Yang, X., Zhong, J. (2019). Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. Journal of the American Heart Association, 8 (17). doi: http://doi.org/10.1161/jaha.119.012826
Wollert, K. C., Kempf, T., Wallentin, L. (2017). Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clinical Chemistry, 63 (1), 140–151. doi: http://doi.org/10.1373/clinchem.2016.255174
Corre, J., Hébraud, B., Bourin, P. (2013). Concise Review: Growth Differentiation Factor 15 in Pathology: A Clinical Role? STEM CELLS Translational Medicine, 2 (12), 946–952. doi: http://doi.org/10.5966/sctm.2013-0055
Prakash, P., Nayak, M. K., Chauhan, A. K. (2017). P‐selectin can promote thrombus propagation independently of both von Willebrand factor and thrombospondin‐1 in mice. Journal of Thrombosis and Haemostasis, 15 (2), 388–394. doi: http://doi.org/10.1111/jth.13586
Ivanov, I. I., Apta, B. H. R., Bonna, A. M., Harper, M. T. (2019). Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Scientific Reports, 9 (1). doi: http://doi.org/10.1038/s41598-019-49635-7
Suthahar, N., Meijers, W. C., Silljé, H. H. W., Ho, J. E., Liu, F.-T., de Boer, R. A. (2018). Galectin-3 Activation and Inhibition in Heart Failure and Cardiovascular Disease: An Update. Theranostics, 8 (3), 593–609. doi: http://doi.org/10.7150/thno.22196
Hogas, S., Bilha, S. C., Branisteanu, D., Hogas, M., Gaipov, A., Kanbay, M., Covic, A. (2017). Potential novel biomarkers of cardiovascular dysfunction and disease: cardiotrophin-1, adipokines and galectin-3. Archives of Medical Science, 4, 897–913. doi: http://doi.org/10.5114/aoms.2016.58664
Berezin, A. E., Berezin, A. A. (2020). Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification – A Narrative Review. Diabetes Therapy, 11 (6), 1271–1291. doi: http://doi.org/10.1007/s13300-020-00835-9
Lorenzo-Almorós, A., Pello, A., Aceña, Á., Martínez-Milla, J., González-Lorenzo, Ó., Tarín, N. et. al. (2020). Galectin-3 is Associated with Cardiovascular Events in Post-Acute Coronary Syndrome Patients with Type-2 Diabetes. Journal of Clinical Medicine, 9 (4), 1105. doi: http://doi.org/10.3390/jcm9041105
Copyright (c) 2020 Anton Bilchenko, Кaterina Vysotska

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Наше издание использует положения об авторских правах CREATIVE COMMONS для журналов открытого доступа.
Авторы, которые публикуются в этом журнале, соглашаются со следующими условиями:
1. Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылкой на авторов оригинальной работы и первую публикацию работы в этом журнале.
2. Авторы имеют право заключать самостоятельные дополнительные соглашения, которые касаются неэксклюзивного распространения работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале .
