The possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in guinea pigs
Abstract
The present study was aimed to evaluate the possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in the guinea pigs’ trachea and lung in early and late manifestations of the allergic inflammatory process.
Materials and methods.We have studied the distribution and quantitative changes of CD3-positive lymphocytes in trachea and lung of guinea pigs using histological, immunohistochemical, statistical methods in conditions of experimental inflammatory process.
Results. Our results revealed the applicability of anti-Human monoclonal antibody CD3 (Clone SP7, «DAKO», Denmark) cross-reaction with T-cells of guinea pigs’ tracheas and lungs. The most statistically significant elevation of the number of CD3-positive lymphocytes, in comparison with the control group (p*/**<0.05), observed in the experimental group III in the late stages of experimental inflammatory process. The elevation of the number of CD3-positive lymphocytes persists even after the termination of the allergen action, which indicates the continuation of the reaction of pulmonary local adaptive immunity to the allergen.
Conclusions. The results of our study may be useful in conditions of the deficiency of guinea pig-specific tests. The immunohistochemical assessment of guinea pigs’ trachea and lungs proved the possibility to use anti-Human monoclonal antibody CD3 as a panT-cell marker in guinea pigs. We demonstrated the activation of adaptive immune response (T-cells), represented by their immunohistochemical changes, predominantly in the late stages of experimental inflammatory process.
Downloads
References
Akdis, C. A., Arkwright, P. D., Brüggen, M.-C., Busse, W., Gadina, M., Guttman‐Yassky, E. et. al. (2020). Type 2 immunity in the skin and lungs. Allergy, 75 (7), 1582–1605. doi: http://doi.org/10.1111/all.14318
Moro, K., Kabata, H., Tanabe, M., Koga, S., Takeno, N., Mochizuki, M. et. al. 2015). Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nature Immunology, 17 (1), 76–86. doi: http://doi.org/10.1038/ni.3309
Vázquez, Y., González, L., Noguera, L., González, P. A., Riedel, C. A., Bertrand, P., Bueno, S. M. (2019). Cytokines in the Respiratory Airway as Biomarkers of Severity and Prognosis for Respiratory Syncytial Virus Infection: An Update. Frontiers in Immunology, 10. doi: http://doi.org/10.3389/fimmu.2019.01154
Sokol, C. L., Luster, A. D. (2015). The Chemokine System in Innate Immunity. Cold Spring Harbor Perspectives in Biology, 7 (5), a016303. doi: http://doi.org/10.1101/cshperspect.a016303
Lambrecht, B. N., Hammad, H. (2014). The immunology of asthma. Nature Immunology, 16 (1), 45–56. doi: http://doi.org/10.1038/ni.3049
Nolin, J. D., Lai, Y., Ogden, H. L., Manicone, A. M., Murphy, R. C., An, D. et. al. (2017). Secreted PLA2 group X orchestrates innate and adaptive immune responses to inhaled allergen. JCI Insight, 2 (21). doi: http://doi.org/10.1172/jci.insight.94929
Hwang, J. Y., Randall, T. D., Silva-Sanchez, A. (2016). Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung. Frontiers in Immunology, 7 (258). doi: http://doi.org/10.3389/fimmu.2016.00258
Elliot, J. G., Jensen, C. M., Mutavdzic, S., Lamb, J. P., Carroll, N. G., James, A. L. (2004). Aggregations of Lymphoid Cells in the Airways of Nonsmokers, Smokers, and Subjects with Asthma. American Journal of Respiratory and Critical Care Medicine, 169 (6), 712–718. doi: http://doi.org/10.1164/rccm.200308-1167oc
Shilling, R. A., Williams, J. W., Perera, J., Berry, E., Wu, Q., Cummings, O. W. et. al. (2013). Autoreactive T and B Cells Induce the Development of Bronchus-Associated Lymphoid Tissue in the Lung. American Journal of Respiratory Cell and Molecular Biology, 48 (4), 406–414. doi: http://doi.org/10.1165/rcmb.2012-0065oc
Baluk, P., Adams, A., Phillips, K., Feng, J., Hong, Y.-K., Brown, M. B., McDonald, D. M. (2014). Preferential Lymphatic Growth in Bronchus-Associated Lymphoid Tissue in Sustained Lung Inflammation. The American Journal of Pathology, 184 (5), 1577–1592. doi: http://doi.org/10.1016/j.ajpath.2014.01.021
Vortmann, M., Eisner, M. D. (2008). BMI and Health Status Among Adults With Asthma. Obesity, 16 (1), 146–152. doi: http://doi.org/10.1038/oby.2007.7
Schäfer, H., Burger, R. (2012). Tools for cellular immunology and vaccine research the in the guinea pig: Monoclonal antibodies to cell surface antigens and cell lines. Vaccine, 30 (40), 5804–5811. doi: http://doi.org/10.1016/j.vaccine.2012.07.012
Adner, M., Canning, B. J., Meurs, H., Ford, W., Ramos Ramírez, P., van den Berg, M. P. M. et. al. (2020). Back to the future: re-establishing guinea pig in vivo asthma models. Clinical Science, 134 (11), 1219–1242. doi: http://doi.org/10.1042/cs20200394
Cai, Z., Liu, J., Bian, H., Cai, J. (2019). Albiflorin alleviates ovalbumin (OVA)-induced pulmonary inflammation in asthmatic mice. American Journal of Translational Research, 11 (12), 7300–7309. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943473/ Last accessed: 05.01.2021
Zemmouri, H., Sekiou, O., Ammar, S., El Feki, A., Bouaziz, M., Messarah, M., Boumendjel, A. (2017). Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model. Pharmaceutical Biology, 55 (1), 1561–1568. doi: http://doi.org/10.1080/13880209.2017.1310905
Antwi, A. O., Obiri, D. D., Osafo, N. (2017). Stigmasterol Modulates Allergic Airway Inflammation in Guinea Pig Model of Ovalbumin-Induced Asthma. Mediators of Inflammation, 2017, 1–11. doi: http://doi.org/10.1155/2017/2953930
Popko, S. S. (2021). Morphological rearrangement of the metabolic link of the microcirculatory bed of guinea pigs lungs after sensitization with ovalbumin. Current Issues in Pharmacy and Medicine: Science and Practice, 14 (1), 79–83. doi: http://doi.org/10.14739/2409-2932.2021.1.226851
Almohawes, Z. N., Alruhaimi, H. S. (2020). Effect of Lavandula dentata extract on Ovalbumin-induced Asthma in Male Guinea Pigs. Brazilian Journal of Biology, 80 (1), 87–96. doi: http://doi.org/10.1590/1519-6984.191485
Dey, P. (2018). Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Singapore; Springer. doi: http://doi.org/10.1007/978-981-10-8252-8
Barrios, J., Patel, K. R., Aven, L., Achey, R., Minns, M. S., Lee, Y. et. al. (2017). Early life allergen‐induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. The FASEB Journal, 31 (9), 4117–4128. doi: http://doi.org/10.1096/fj.201700115r
Larsen, G. L., Holt, P. G. (2000). The Concept of Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 162 (1), 2–6. doi: http://doi.org/10.1164/ajrccm.162.supplement_1.maic-1
Vasconcelos, L. H. C., Silva, M. da C. C., Costa, A. C., Oliveira, G. A. de, Souza, I. L. L. de, Righetti, R. F. et. al. (2020). Virgin Coconut Oil Supplementation Prevents Airway Hyperreactivity of Guinea Pigs with Chronic Allergic Lung Inflammation by Antioxidant Mechanism. Oxidative Medicine and Cellular Longevity, 2020, 1–16. doi: http://doi.org/10.1155/2020/5148503
Denney, L., Byrne, A. J., Shea, T. J., Buckley, J. S., Pease, J. E., Herledan, G. M. F. et. al. (2015). Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function. Immunity, 43 (5), 945–958. doi: http://doi.org/10.1016/j.immuni.2015.10.012
Banno, A., Reddy, A. T., Lakshmi, S. P., Reddy, R. C. (2020). Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clinical Science, 134 (9), 1063–1079. doi: http://doi.org/10.1042/cs20191309
Popko, S. S., Evtushenko, V. M., Syrtsov, V. K. (2020). Influence of pulmonary neuroendocrine cells on lung homeostasis. Zaporozhye Medical Journal, 22 (4 (121)), 568–575. doi: http://doi.org/10.14739/2310-1210.2020.4.208411
Copyright (c) 2022 Svitlana Popko, Mariya Aksamytieva

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.