The possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in guinea pigs

Keywords: experimental inflammation, CD3, guinea pig, lung, trachea


The present study was aimed to evaluate the possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in the guinea pigs’ trachea and lung in early and late manifestations of the allergic inflammatory process.

Materials and methods.We have studied the distribution and quantitative changes of CD3-positive lymphocytes in trachea and lung of guinea pigs using histological, immunohistochemical, statistical methods in conditions of experimental inflammatory process.

Results. Our results revealed the applicability of anti-Human monoclonal antibody CD3 (Clone SP7, «DAKO», Denmark) cross-reaction with T-cells of guinea pigs’ tracheas and lungs. The most statistically significant elevation of the number of CD3-positive lymphocytes, in comparison with the control group (p*/**<0.05), observed in the experimental group III in the late stages of experimental inflammatory process. The elevation of the number of CD3-positive lymphocytes persists even after the termination of the allergen action, which indicates the continuation of the reaction of pulmonary local adaptive immunity to the allergen.

Conclusions. The results of our study may be useful in conditions of the deficiency of guinea pig-specific tests. The immunohistochemical assessment of guinea pigs’ trachea and lungs proved the possibility to use anti-Human monoclonal antibody CD3 as a panT-cell marker in guinea pigs. We demonstrated the activation of adaptive immune response (T-cells), represented by their immunohistochemical changes, predominantly in the late stages of experimental inflammatory process.


Download data is not yet available.

Author Biographies

Svitlana Popko, Zaporizhzhia State Medical University

Department of Histology, Cytology and Embryology

Mariya Aksamytieva, Zaporizhzhia State Medical University

Department of Histology, Cytology and Embryology


Akdis, C. A., Arkwright, P. D., Brüggen, M.-C., Busse, W., Gadina, M., Guttman‐Yassky, E. et. al. (2020). Type 2 immunity in the skin and lungs. Allergy, 75 (7), 1582–1605. doi:

Moro, K., Kabata, H., Tanabe, M., Koga, S., Takeno, N., Mochizuki, M. et. al. 2015). Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nature Immunology, 17 (1), 76–86. doi:

Vázquez, Y., González, L., Noguera, L., González, P. A., Riedel, C. A., Bertrand, P., Bueno, S. M. (2019). Cytokines in the Respiratory Airway as Biomarkers of Severity and Prognosis for Respiratory Syncytial Virus Infection: An Update. Frontiers in Immunology, 10. doi:

Sokol, C. L., Luster, A. D. (2015). The Chemokine System in Innate Immunity. Cold Spring Harbor Perspectives in Biology, 7 (5), a016303. doi:

Lambrecht, B. N., Hammad, H. (2014). The immunology of asthma. Nature Immunology, 16 (1), 45–56. doi:

Nolin, J. D., Lai, Y., Ogden, H. L., Manicone, A. M., Murphy, R. C., An, D. et. al. (2017). Secreted PLA2 group X orchestrates innate and adaptive immune responses to inhaled allergen. JCI Insight, 2 (21). doi:

Hwang, J. Y., Randall, T. D., Silva-Sanchez, A. (2016). Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung. Frontiers in Immunology, 7 (258). doi:

Elliot, J. G., Jensen, C. M., Mutavdzic, S., Lamb, J. P., Carroll, N. G., James, A. L. (2004). Aggregations of Lymphoid Cells in the Airways of Nonsmokers, Smokers, and Subjects with Asthma. American Journal of Respiratory and Critical Care Medicine, 169 (6), 712–718. doi:

Shilling, R. A., Williams, J. W., Perera, J., Berry, E., Wu, Q., Cummings, O. W. et. al. (2013). Autoreactive T and B Cells Induce the Development of Bronchus-Associated Lymphoid Tissue in the Lung. American Journal of Respiratory Cell and Molecular Biology, 48 (4), 406–414. doi:

Baluk, P., Adams, A., Phillips, K., Feng, J., Hong, Y.-K., Brown, M. B., McDonald, D. M. (2014). Preferential Lymphatic Growth in Bronchus-Associated Lymphoid Tissue in Sustained Lung Inflammation. The American Journal of Pathology, 184 (5), 1577–1592. doi:

Vortmann, M., Eisner, M. D. (2008). BMI and Health Status Among Adults With Asthma. Obesity, 16 (1), 146–152. doi:

Schäfer, H., Burger, R. (2012). Tools for cellular immunology and vaccine research the in the guinea pig: Monoclonal antibodies to cell surface antigens and cell lines. Vaccine, 30 (40), 5804–5811. doi:

Adner, M., Canning, B. J., Meurs, H., Ford, W., Ramos Ramírez, P., van den Berg, M. P. M. et. al. (2020). Back to the future: re-establishing guinea pig in vivo asthma models. Clinical Science, 134 (11), 1219–1242. doi:

Cai, Z., Liu, J., Bian, H., Cai, J. (2019). Albiflorin alleviates ovalbumin (OVA)-induced pulmonary inflammation in asthmatic mice. American Journal of Translational Research, 11 (12), 7300–7309. Available at: Last accessed: 05.01.2021

Zemmouri, H., Sekiou, O., Ammar, S., El Feki, A., Bouaziz, M., Messarah, M., Boumendjel, A. (2017). Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model. Pharmaceutical Biology, 55 (1), 1561–1568. doi:

Antwi, A. O., Obiri, D. D., Osafo, N. (2017). Stigmasterol Modulates Allergic Airway Inflammation in Guinea Pig Model of Ovalbumin-Induced Asthma. Mediators of Inflammation, 2017, 1–11. doi:

Popko, S. S. (2021). Morphological rearrangement of the metabolic link of the microcirculatory bed of guinea pigs lungs after sensitization with ovalbumin. Current Issues in Pharmacy and Medicine: Science and Practice, 14 (1), 79–83. doi:

Almohawes, Z. N., Alruhaimi, H. S. (2020). Effect of Lavandula dentata extract on Ovalbumin-induced Asthma in Male Guinea Pigs. Brazilian Journal of Biology, 80 (1), 87–96. doi:

Dey, P. (2018). Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Singapore; Springer. doi:

Barrios, J., Patel, K. R., Aven, L., Achey, R., Minns, M. S., Lee, Y. et. al. (2017). Early life allergen‐induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. The FASEB Journal, 31 (9), 4117–4128. doi:

Larsen, G. L., Holt, P. G. (2000). The Concept of Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 162 (1), 2–6. doi:

Vasconcelos, L. H. C., Silva, M. da C. C., Costa, A. C., Oliveira, G. A. de, Souza, I. L. L. de, Righetti, R. F. et. al. (2020). Virgin Coconut Oil Supplementation Prevents Airway Hyperreactivity of Guinea Pigs with Chronic Allergic Lung Inflammation by Antioxidant Mechanism. Oxidative Medicine and Cellular Longevity, 2020, 1–16. doi:

Denney, L., Byrne, A. J., Shea, T. J., Buckley, J. S., Pease, J. E., Herledan, G. M. F. et. al. (2015). Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function. Immunity, 43 (5), 945–958. doi:

Banno, A., Reddy, A. T., Lakshmi, S. P., Reddy, R. C. (2020). Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clinical Science, 134 (9), 1063–1079. doi:

Popko, S. S., Evtushenko, V. M., Syrtsov, V. K. (2020). Influence of pulmonary neuroendocrine cells on lung homeostasis. Zaporozhye Medical Journal, 22 (4 (121)), 568–575. doi:

👁 139
⬇ 109
How to Cite
Popko, S., & Aksamytieva, M. (2022). The possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in guinea pigs. EUREKA: Health Sciences, (2), 17-22.
Medicine and Dentistry