Role of macrophages in the immunopathogenesis of adenomyosis

Keywords: adenomyosis, menstrual disorder, pathophysiological mechanisms, immune regulation, macrophages, markers of phagocytic dysfunction, CD68 and CD163 cells


The aim of the research: to study pathophysiological mechanisms of adenomyosis development by determining the role of macrophages in the uterine microenvironment.

Materials and methods: a prospective study has been conducted on 35 women. There were 20 (57.1 %) who had adenomyosis of I degree. The control group consisted of 15 (34.3 %) gynecologically healthy women. The patients underwent general clinical, instrumental (ultrasound, hysteroscopy) examinations. Fragments of the uterine wall obtained by hysterorectoscopy were used for morphological study. The method of immunohistochemical determination of CD68+ and CD163+ macrophages was used to analyze the characteristics of phenotypic equivalents of M1 and M2 macrophages in uterine tissue samples.

Results: The increase in the number of macrophages in the myometrium of patients with adenomyosis revealed in this study, which is found in large numbers in the areas of infiltration of the stroma of myometrial cells in close association with the perivascular region, can be regarded as the basis of the mechanism for the formation of endometrioid heterotopia. Furthermore, distortion of the CD68/CD163 ratio of macrophages is characterized by proinflammatory shift.

Conclusions: The study's main result is an increase in the quantitative indicators of CD68+ macrophages associated with adenomyosis, which indicates an immunopathological process in adenomyosis.


Download data is not yet available.

Author Biographies

Nikolay Shcherbina, Kharkiv National Medical University

Department of Obstetrics and Gynecology No. 1

Anastasia Chekhunova, Kharkiv National Medical University

Department of Obstetrics and Gynecology No. 1


Burney, R. O., Giudice, L. C. (2012). Pathogenesis and pathophysiology of endometriosis. Fertility and Sterility, 98 (3), 511–519. doi:

Giudice, L. C., Kao, L. C. (2004). Endometriosis. The Lancet, 364 (9447), 1789–1799. doi:

Kennedy, S., Bergqvist, A., Chapron, C., D’Hooghe, T., Dunselman, G., Greb, R. et. al. (2005). ESHRE guideline for the diagnosis and treatment of endometriosis. Human Reproduction, 20 (10), 2698–2704. doi:

Laganà, A. S., Garzon, S., Götte, M., Viganò, P., Franchi, M., Ghezzi, F., Martin, D. C. (2019). The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. International Journal of Molecular Sciences, 20 (22), 5615. doi:

Mehedintu, C., Plotogea, M. N., Ionescu, S., Antonovici, M. (2014). Endometriosis still a challenge. Journal of Medicine and Life, 7 (3), 349–357.

Adamson, G. D., Pasta, D. J. (2010). Endometriosis fertility index: the new, validated endometriosis staging system. Fertility and Sterility, 94 (5), 1609–1615. doi:

Amalinei, C., Păvăleanu, I., Lozneanu, L., Balan, R., Giuşcă, S.-E., Căruntu, I.-D. (2018). Endometriosis — insights into a multifaceted entity. Folia Histochemica et Cytobiologica, 56 (2), 61–82. doi:

Chapron, C., Marcellin, L., Borghese, B., Santulli, P. (2019). Rethinking mechanisms, diagnosis and management of endometriosis. Nature Reviews Endocrinology, 15 (11), 666–682. doi:

Zondervan, K. T., Becker, C. M., Koga, K., Missmer, S. A., Taylor, R. N., Viganò, P. (2018). Endometriosis. Nature Reviews Disease Primers, 4 (1). doi:

García-Gómez, E., Vázquez-Martínez, E. R., Reyes-Mayoral, C., Cruz-Orozco, O. P., Camacho-Arroyo, I., & Cerbón, M. (2020). Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Frontiers in Endocrinology, 10. doi:

Maybin, J. A., Critchley, H. O. D. (2015). Menstrual physiology: implications for endometrial pathology and beyond. Human Reproduction Update, 21 (6), 748–761. doi:

Benagiano, G., Brosens, I., Habiba, M. (2013). Structural and molecular features of the endomyometrium in endometriosis and adenomyosis. Human Reproduction Update, 20 (3), 386–402. doi:

Matalliotakis, M., Zervou, M. I., Matalliotaki, C., Rahmioglu, N., Koumantakis, G., Kalogiannidis, I. et. al. (2017). The role of gene polymorphisms in endometriosis. Molecular Medicine Reports, 16 (5), 5881–5886. doi:

Jerman, L. F., Hey-Cunningham, A. J. (2015). The Role of the Lymphatic System in Endometriosis: A Comprehensive Review of the Literature1. Biology of Reproduction, 92 (3). doi:

Sapkota, Y., Steinthorsdottir, V., Morris, A. P., Fassbender, A., Rahmioglu, N., De Vivo, I. et. al. (2017). Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nature Communications, 8 (1). doi:

Thiruchelvam, U., Dransfield, I., Saunders, P. T. K., Critchley, H. O. D. (2012). The importance of the macrophage within the human endometrium. Journal of Leukocyte Biology, 93 (2), 217–225. doi:

Hogg, C., Horne, A. W., Greaves, E. (2020). Endometriosis-Associated Macrophages: Origin, Phenotype, and Function. Frontiers in Endocrinology, 11. doi:

Bonatz, G., Hansmann, M.-L., Buchholz, F., Mettler, L., Radzun, H. J., Semm, K. (1992). Macrophage- and lymphocyte-subtypes in the endometrium during different phases of the ovarian cycle. International Journal of Gynecology & Obstetrics, 37 (1), 29–36. doi:

Vallvé-Juanico, J., Santamaria, X., Vo, K. C., Houshdaran, S., Giudice, L. C. (2019). Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertility and Sterility, 112 (6), 1118–1128. doi:

Sekiguchi, K., Ito, Y., Hattori, K., Inoue, T., Hosono, K., Honda, M. et. al. (2019). VEGF Receptor 1-Expressing Macrophages Recruited from Bone Marrow Enhances Angiogenesis in Endometrial Tissues. Scientific Reports, 9 (1). doi:

Rőszer, T. (2015). Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators of Inflammation, 2015, 1–16. doi:

Wu, J., Xie, H., Yao, S., Liang, Y. (2017). Macrophage and nerve interaction in endometriosis. Journal of Neuroinflammation, 14 (1). doi:

Capobianco, A. (2013). Endometriosis, a disease of the macrophage. Frontiers in Immunology, 4. doi:

Atri, C., Guerfali, F., Laouini, D. (2018). Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International Journal of Molecular Sciences, 19 (6), 1801. doi:

Takebayashi, A., Kimura, F., Kishi, Y., Ishida, M., Takahashi, A., Yamanaka, A. et. al. (2014). Subpopulations of Macrophages within Eutopic Endometrium of Endometriosis Patients. American Journal of Reproductive Immunology, 73 (3), 221–231. doi:

Kim, J., Bae, J.-S. (2016). Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediators of Inflammation, 2016, 1–11. doi:

Zhou, J., Tang, Z., Gao, S., Li, C., Feng, Y., Zhou, X. (2020). Tumor-Associated Macrophages: Recent Insights and Therapies. Frontiers in Oncology, 10.

Amalinei, C., Păvăleanu, I., Lozneanu, L., Balan, R., Giuşcă, S.-E., Căruntu, I.-D. (2018). Endometriosis – insights into a multifaceted entity. Folia Histochemica et Cytobiologica, 56 (2), 61–82. doi:

Sun, H., Li, D., Yuan, M., Li, Q., Zhen, Q., Li, N., Wang, G. (2018). Macrophages alternatively activated by endometriosis-exosomes contribute to the development of lesions in mice. MHR: Basic Science of Reproductive Medicine, 25 (1), 5–16. doi:

Role of macrophages in the immunopathogenesis of adenomyosis

👁 31
⬇ 31
How to Cite
Shcherbina, N., & Chekhunova, A. (2022). Role of macrophages in the immunopathogenesis of adenomyosis. EUREKA: Health Sciences, (4), 50-56.
Medicine and Dentistry