• Danuta Zastavna SI “Institute of Hereditary Pathology Ukrainian National Academy of Medical Sciences”, Rzeszow University of Technology
  • Kateryna Sosnina SI “Institute of Hereditary Pathology Ukrainian National Academy of Medical Sciences”
  • Oresta Terpyliak SI “Institute of Hereditary Pathology Ukrainian National Academy of Medical Sciences”
  • Halyna Makukh SI “Institute of Hereditary Pathology Ukrainian National Academy of Medical Sciences”
  • Bogdan Tretiak SI “Institute of Hereditary Pathology Ukrainian National Academy of Medical Sciences”
  • Ludmyla Bober Western Ukrainian Specialized Children’s Medical Centre
  • Miroslav Tyrka Rzeszow University of Technology
Keywords: NK cells; KIR – killer cell immunoglobulin-like receptor; KIR genes; Cystic fibrosis


Aim to establish and analyze the spectrum of KIR genes in people with a confirmed diagnosis of Cystic fibrosis (CF), homozygote of F508del mutation of the СFTR gene for understanding the genetic predisposition of congenital immunity key part functioning during CF.

Materials and Methods. Examined 48 people with a confirmed diagnosis of CF, homozygotes of the F508del mutation of the CFTR gene, and 104 practically healthy people without the F508del mutation of the CFTR gene from the control group. The following molecular genetic methods were used: DNA extraction from peripheral blood cells, KIR genotyping by PCR-SSP for the presence or absence of the 14 KIR genes (KIR2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1).

Results molecular genetic studies of KIR-genes repertoire in the group of cystic fibrosis patients showed a decrease in the frequency of genes, responsible for activating NK cells receptors. Of the five examined NK cell activation genes, one gene was completely absent, namely 2DS4, and another (2DS1) was detected in only 3 of 48 patients examined, which was 6.25 %, and this figure is significantly lower in comparison with the control group (c2=4.801, p<0.05). Regarding the genes of NK-cell inhibitory receptors, all investigated genes were detected in the study group (8 in general). By detection frequency, they mostly correspond to the control group, with the exception of the 2DL3 gene, found in patients with CF with a significantly lower frequency (c2=11.97, p<0.005).

Conclusion for the first time in the group of patients with CF, a study was performed on the frequency and spectrum of KIR-genes, responsible for NK cell receptors. Reducing the frequency of activation NK cell receptor genes in patients with CF can lead to a weakening of congenital immunity and the severity of infectious processes during CF


Download data is not yet available.

Author Biographies

Danuta Zastavna, SI “Institute of Hereditary Pathology Ukrainian National Academy of Medical Sciences”, Rzeszow University of Technology

Department of Biotechnology and Bioinformatics, Faculty of Chemistry

Miroslav Tyrka, Rzeszow University of Technology

Department of Biotechnology and Bioinformatics, Faculty of Chemistry


Hamerman, J. A., Ogasawara, K., Lanier, L. L. (2005). NK cells in innate immunity. Current Opinion in Immunology, 17 (1), 29–35. doi: https://doi.org/10.1016/j.coi.2004.11.001

Vivier, E., Ugolini, S. (2011). Natural Killer Cells: From Basic Research to Treatments. Frontiers in Immunology, 2. doi: https://doi.org/10.3389/fimmu.2011.00018

Srivastava, R. M., Savithri, B., Khar, A. (2003). Activating and inhibitory receptors and their role in Natural Killer cell function. Indian Journal of Biochemistry and Biophysics, 40 (5), 291–299.

Malhotra, A., Shanker, A. (2011). NK cells: immune cross-talk and therapeutic implications. Immunotherapy, 3 (10), 1143–1166. doi: https://doi.org/10.2217/imt.11.102

Joyce, M. G., Sun, P. D. (2011). The Structural Basis of Ligand Recognition by Natural Killer Cell Receptors. Journal of Biomedicine and Biotechnology, 2011, 1–15. doi: https://doi.org/10.1155/2011/203628

Carrington, M., Norman, P. (2003). The KIR Gene Cluster. Bethesda (MD): National Center for Biotechnology Information (US). Available at: https://www.ncbi.nlm.nih.gov/books/NBK10135/pdf/Bookshelf_NBK10135.pdf

Omar, S. Y. A., Alkuriji, A., Alwasel, S., Dar, javid A., Alhammad, A., Christmas, S., Mansour, L. (2016). Genotypic diversity of the Killer Cell Immunoglobulin-like Receptors (KIR) and their HLA class I Ligands in a Saudi population. Genetics and Molecular Biology, 39 (1), 14–23. doi: https://doi.org/10.1590/1678-4685-gmb-2015-0055

Campbell, K. S., Purdy, A. K. (2011). Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology, 132 (3), 315–325. doi: https://doi.org/10.1111/j.1365-2567.2010.03398.x

Wagner, I., Schefzyk, D., Pruschke, J., Schöfl, G., Schöne, B., Gruber, N. et. al. (2018). Allele-Level KIR Genotyping of More Than a Million Samples: Workflow, Algorithm, and Observations. Frontiers in Immunology, 9. doi: https://doi.org/10.3389/fimmu.2018.02843

Vilches, C., Parham, P. (2002). KIR: Diverse, Rapidly Evolving Receptors of Innate and Adaptive Immunity. Annual Review of Immunology, 20 (1), 217–251. doi: https://doi.org/10.1146/annurev.immunol.20.092501.134942

Hollenbach, J. A., Nocedal, I., Ladner, M. B., Single, R. M., Trachtenberg, E. A. (2012). Killer cell immunoglobulin-like receptor (KIR) gene content variation in the HGDP-CEPH populations. Immunogenetics, 64 (10), 719–737. doi: https://doi.org/10.1007/s00251-012-0629-x

Scotet, V., Duguépéroux, I., Audrézet, M.-P., Blayau, M., Boisseau, P., Journel, H. et. al. (2008). Prenatal diagnosis of cystic fibrosis: the 18-year experience of Brittany (western France). Prenatal Diagnosis, 28 (3), 197–202. doi: https://doi.org/10.1002/pd.1910

Gamaletsou, M. N., Hayes, G., Harris, C., Brock, J., Muldoon, E. G., Denning, D. W. (2017). F508del CFTR gene mutation in patients with allergic bronchopulmonary aspergillosis. Journal of Asthma, 55 (8), 837–843. doi: https://doi.org/10.1080/02770903.2017.1373808

Maurya, N., Awasthi, S., Dixit, P. (2012). Association of CFTR gene mutation with bronchial asthma. Indian Journal of Medical Research, 135 (4), 469–478.

Makukh, H. V., Zastavna, D. V., Tyrkus, M. Y., Tretiak, B. I., Chorna, L. B. (2008). Pat. No. 32044 UA. Method for separation of DNA from leucocytes of peripheral blood. No. u200801896; declareted: 14.02.2008; published: 25.04.2008, Bul. No. 8.

Vilches, C., Castaño, J., Gómez-Lozano, N., Estefanía, E. (2007). Facilitation of KIR genotyping by a PCR-SSP method that amplifies short DNA fragments. Tissue Antigens, 70 (5), 415–422. doi: https://doi.org/10.1111/j.1399-0039.2007.00923.x

Norman, P. J., Carrington, C. V. F., Byng, M., Maxwell, L. D., Curran, M. D., Stephens, H. A. F. et. al. (2002). Natural killer cell immunoglobulin-like receptor (KIR) locus profiles in African and South Asian populations. Genes & Immunity, 3 (2), 86–95. doi: https://doi.org/10.1038/sj.gene.6363836

Flores, A. C., Marcos, C. Y., Paladino, N., Capucchio, M., Theiler, G., Arruvito, L. et. al. (2007). KIR genes polymorphism in Argentinean Caucasoid and Amerindian populations. Tissue Antigens, 69 (6), 568–576. doi: https://doi.org/10.1111/j.1399-0039.2007.00824.x

Espeli, M., Niederer, H. A., Traherne, J. A., Trowsdale, J., Smith, K. G. (2010). Genetic variation, Fcγ receptors, KIRs and infection: the evolution of autoimmunity. Current Opinion in Immunology, 22 (6), 715–722. doi: https://doi.org/10.1016/j.coi.2010.10.003

Martin, A. M., Freitas, E. M., Witt, C. S., Christiansen, F. T. (2000). The genomic organization and evolution of the natural killer immunoglobulin-like receptor (KIR) gene cluster. Immunogenetics, 51 (4-5), 268–280. doi: https://doi.org/10.1007/s002510050620

Bao, X., Hou, L., Sun, A., Qiu, Q., Yuan, X., Chen, M. et. al. (2010). Distribution of killer cell immunoglobulin-like receptor genes and 2DS4 alleles in the Chinese Han population. Human Immunology, 71 (3), 289–292. doi: https://doi.org/10.1016/j.humimm.2009.12.004

Toneva, M., Lepage, V., Lafay, G., Dulphy, N., Busson, M., Lester, S. et. al. (2001). Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens, 57 (4), 358–362. doi: https://doi.org/10.1034/j.1399-0039.2001.057004358.x

Zwolińska, K., Błachowicz, O., Tomczyk, T., Knysz, B., Gąsiorowski, J., Zalewska, M. et. al. (2016). The effects of killer cell immunoglobulin-like receptor (KIR) genes on susceptibility to HIV-1 infection in the Polish population. Immunogenetics, 68 (5), 327–337. doi: https://doi.org/10.1007/s00251-016-0906-1

Garrido-Rodríguez, D., Ávila-Ríos, S., García-Morales, C., Valenzuela-Ponce, H., Ormsby, C., Reyes-Gopar, H. et. al. (2016). Killer cell immunoglobulin-like receptor and human leukocyte antigen gene profiles in a cohort of HIV-infected Mexican Mestizos. Immunogenetics, 68 (9), 703–717. doi: https://doi.org/10.1007/s00251-016-0920-3

Naranbhai, V., de Assis Rosa, D., Werner, L., Moodley, R., Hong, H., Kharsany, A. et. al. (2015). Killer-cell Immunoglobulin-like Receptor (KIR) gene profiles modify HIV disease course, not HIV acquisition in South African women. BMC Infectious Diseases, 16 (1). doi: https://doi.org/10.1186/s12879-016-1361-1

Kuśnierczyk, P., Mozer-Lisewska, I., Zwolińska, K., Kowala-Piaskowska, A. E., Bura, M., Bereszyńska, I. et. al. (2015). Contribution of genes for killer cell immunoglobulin-like receptors (KIR) to the susceptibility to chronic hepatitis C virus infection and to viremia. Human Immunology, 76 (2-3), 102–108. doi: https://doi.org/10.1016/j.humimm.2015.01.020

Shan, Z., Huang, J., Liao, Q., Huang, K., Wang, M., Xu, R. et. al. (2018). Association of killer cell immunoglobulin-like receptors with spontaneous clearance of hepatitis C virus in the Chinese population. Transfusion, 58 (4), 1028–1035. doi: https://doi.org/10.1111/trf.14527

Podhorzer, A., Dirchwolf, M., Machicote, A., Belen, S., Montal, S., Paz, S. et. al. (2018). The Clinical Features of Patients with Chronic Hepatitis C Virus Infections Are Associated with Killer Cell Immunoglobulin-Like Receptor Genes and Their Expression on the Surface of Natural Killer Cells. Frontiers in Immunology, 8. doi: https://doi.org/10.3389/fimmu.2017.01912

Romero, V., Azocar, J., Zúñiga, J., Clavijo, O. P., Terreros, D., Gu, X. et. al. (2008). Interaction of NK inhibitory receptor genes with HLA-C and MHC class II alleles in Hepatitis C virus infection outcome. Molecular Immunology, 45(9), 2429–2436. doi: https://doi.org/10.1016/j.molimm.2008.01.002

Montes-Cano, M. A., Caro-Oleas, J. L., Romero-Gómez, M., Diago, M., Andrade, R., Carmona, I. et. al. (2005). HLA-C and KIR Genes in Hepatitis C Virus Infection. Human Immunology, 66 (11), 1106–1109. doi: https://doi.org/10.1016/j.humimm.2006.02.001

Abstract views: 29
PDF Downloads: 18
How to Cite
Zastavna, D., Sosnina, K., Terpyliak, O., Makukh, H., Tretiak, B., Bober, L., & Tyrka, M. (2020). SPECTRUM AND FREQUENCY OF NK CELL RECEPTOR GENES AMONG CYSTIC FIBROSIS PATIENTS. EUREKA: Life Sciences, (3), 3-9. https://doi.org/10.21303/2504-5695.2020.001328
Biochemistry, Genetics and Molecular Biology