Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer

Keywords: observation network, groundwater aquifer, groundwater level, groundwater quality, impact on groundwater

Abstract

Ukraine, as a party to the Association Agreement, in accordance with Directive 2000/60/EC of the European Parliament and of the Council, recognizes water as the most expensive resource on our planet, which must be protected and saved. Every country and every inhabitant of the planet must do everything possible to reduce the thoughtless use of water and stop water pollution. The priority is the identification of water users and "polluters", as well as the detection and prevention of pollution of water resources, which includes the identification of water sampling points around potential sources of pollution.

The aim of the research is to determine the impact of pig farms on the qualitative and quantitative characteristics of groundwater using existing water intakes to preserve natural water resources from pollution and depletion. An important point for monitoring in this situation is the use of existing water intakes (bores and wells) without additional construction of observation bores and interference in the environment.

To complete the study, it is necessary to create an observation (monitoring) network of selected points and establish the frequency of their study. The observation network should determine the level (static and dynamic) as well as the quality of groundwater, which reflects background concentrations (natural or "conditionally natural"). "Conditionally natural" concentrations may indicate an excess of pollutants, associated with anthropogenic impacts that occurred prior to the activities of a particular entity, in respect of which the study is conducted. Given the changes in the quality characteristics of water, caused by external factors, "conditionally natural" concentrations can be taken as background. The obtained information will allow, depending on the quality and quantity of groundwater (their level) to make management decisions on the management of groundwater resources. Groundwater in rural settlements near enterprises is in most cases the only source of water supply.

The laboratory analysis of water samples from selected points in 2020 showed an excess of color, odor at 60 °C, turbidity, total iron in bores and wells. The detected elevations are due to the peculiarity of the geological structure (aquifer of Eocene sediments). The excess in the hydrogen index is almost 10 times from the surface water body, which can be taken as "conditionally natural" (background) with further study of the specific impact of the complex on the environment. The main indicators that may indicate direct contamination of the pig complex, such as nitrates, nitrites, ammonium nitrogen and microbiological studies, do not exceed the normalized values, set for drinking water. In this case, the specific indicators are within normal limits. Petroleum products were not detected in the studied samples

Downloads

Download data is not yet available.

Author Biographies

Viktoriia Serdiuk, National University of Life and Environmental Sciences of Ukraine

Department of Agrosphere Ecology and Environmental Control

Viktor Maksin, National University of Life and Environmental Sciences of Ukraine

Department of Agrosphere Ecology and Environmental Control

References

Chowdhury, S. (2013). Exposure assessment for trihalomethanes in municipal drinking water and risk reduction strategy. Science of The Total Environment, 463-464, 922–930. doi: https://doi.org/10.1016/j.scitotenv.2013.06.104

Mohamed, A. K., Dan, L., Kai, S., Eldaw, E., Abualela, S. (2019). Evaluating the suitability of groundwater for drinking purposes in the North Chengdu Plain, China. E3S Web of Conferences, 81, 01006. doi: https://doi.org/10.1051/e3sconf/20198101006

Adimalla, N., Vasa, S. K., Li, P. (2018). Evaluation of groundwater quality, Peddavagu in Central Telangana (PCT), South India: an insight of controlling factors of fluoride enrichment. Modeling Earth Systems and Environment, 4 (2), 841–852. doi: https://doi.org/10.1007/s40808-018-0443-z

Ndoye, S., Fontaine, C., Gaye, C., Razack, M. (2018). Groundwater Quality and Suitability for Different Uses in the Saloum Area of Senegal. Water, 10 (12), 1837. doi: https://doi.org/10.3390/w10121837

Zakharenko, M. O., Yaremchuk, O. S., Shevchenko, L. V., Poliakovskyi, V. M., Mykhalska, V. M., Maliuha, L. V., Kovalenko, V. O. (2015). Biotekhnolohiya vidkhodiv tvarynnytskykh pidpryiemstv. Kyiv, 380. Available at: http://repository.vsau.org/getfile.php/19557.pdf

Sahoo, P. K., Kim, K., Powell, M. A. (2016). Managing Groundwater Nitrate Contamination from Livestock Farms: Implication for Nitrate Management Guidelines. Current Pollution Reports, 2 (3), 178–187. doi: https://doi.org/10.1007/s40726-016-0033-5

Mirzaie-Nodoushan, F., Bozorg-Haddad, O., Loáiciga, H. A. (2017). Optimal design of groundwater-level monitoring networks. Journal of Hydroinformatics, 19 (6), 920–929. doi: https://doi.org/10.2166/hydro.2017.044

Lee, G.-M., Park, S., Kim, K.-I., Jeon, S.-H., Song, D., Kim, D. et. al. (2017). Evaluation for Impacts of Nitrogen Source to Groundwater Quality in Livestock Farming Area. Korean Journal of Soil Science and Fertilizer, 50 (5), 345–356. doi: https://doi.org/10.7745/KJSSF.2017.50.5.345

Kavusi, M., Khashei Siuki, A., Dastourani, M. (2020). Optimal Design of Groundwater Monitoring Network Using the Combined Election-Kriging Method. Water Resources Management, 34 (8), 2503–2516. doi: https://doi.org/10.1007/s11269-020-02568-7

Sasakova, N., Veselitz-Lakticova, K., Hromada, R., Chvojka, D., Kosco, J., Ondrasovic, M. (2013). Contamination of Individual sources of drinking water located in environmentally polluted central spis region (Slovakia). Journal of Microbiology, Biotechnology and Food Sciences, 3 (3), 262–265. Available at: https://www.jmbfs.org/jmbfs_sasakova_godole/?issue_id=2830&article_id=18

Fridrich, B., Krčmar, D., Dalmacija, B., Molnar, J., Pešić, V., Kragulj, M., Varga, N. (2014). Impact of wastewater from pig farm lagoons on the quality of local groundwater. Agricultural Water Management, 135, 40–53. doi: https://doi.org/10.1016/j.agwat.2013.12.014

Sasakova, N., Gregova, G., Takacova, D., Mojzisova, J., Papajova, I., Venglovsky, J. et. al. (2018). Pollution of Surface and Ground Water by Sources Related to Agricultural Activities. Frontiers in Sustainable Food Systems, 2. doi: https://doi.org/10.3389/fsufs.2018.00042

Hidroheolohichna karta Ukrainy. Karty Ukrainy. Available at: https://geomap.land.kiev.ua/water.html

Doreau, M., Corson, M. S., Wiedemann, S. G. (2012). Water use by livestock: A global perspective for a regional issue? Animal Frontiers, 2 (2), 9–16. doi: https://doi.org/10.2527/af.2012-0036

Pro zatverdzhennia Derzhavnykh sanitarnykh norm ta pravyl "Hihienichni vymohy do vody pytnoi, pryznachenoi dlia spozhyvannia liudynoiu" (DSanPiN 2.2.4-171-10). Verkhovna Rada of Ukraine. Available at: https://zakon.rada.gov.ua/laws/show/z0452-10#Text

GOST 3351-74. Drinking water. Methods for determination of odour, taste, colour and turbidity (1974). Moscow: Mezhgosudarstvenniy standart. Available at: https://files.stroyinf.ru/Data/363/36376.pdf

DSTU 4077-2001. Yakist vody. Vyznachennia rN (2001). Kyiv: Ukraina: Derzhavnyi Standart Ukrainy. Available at: http://online.budstandart.com/ru/catalog/doc-page?id_doc=52791

DSTU ISO 11885:2005. Yakist vody. Vyznachannia 33 elementiv metodom atomno-emisiynoi spektrometriyi z induktyvno-zv'yazanoiu plazmoiu (ISO 11885:1996, IDT) (2005). Kyiv: Derzhavnyi Standart Ukrainy. Available at: https://budstandart.ua/normativ-document.html?id_doc=51733&minregion=852

GOST 18309-72. Voda pit'evaya. Metod opredeleniya soderzhaniya polifosfatov (1972). Moscow: Mezhgosudarstvenniy standart. Available at: http://vsegost.com/Catalog/17/17680.shtml

GOST 4389-72. Drinking water. Method for determination of sulphate content (1972). Moscow: Mezhgosudarstvenniy standart. Available at: http://online.budstandart.com/ru/catalog/doc-page?id_doc=48298

GOST 4245-72. Drinking water. Methods for determination of chloride content (1972). Moscow: Mezhgosudarstvenniy standart. Available at: https://docs.cntd.ru/document/1200008214

GOST 4192-82. Drinking water. Methods of determination of mineral nitrogen-containing matters (1982). Moscow: Gosudarstvenniy Standart Soyuza SSR. Available at: http://www.opengost.ru/iso/3969-gost-4192-82-voda-pitevaya.-metody-opredeleniya-mineralnyh-azotsoderzhaschih-veschestv.html

GOST 18826-73. Drinking Water. Methods for determination of Nitrates Content. Available at: http://www.vashdom.ru/gost/18826-73

GOST 4011-72. Drinking water. Methods for determination of total iron. Available at: https://docs.cntd.ru/document/1200008210

GOST 4151-72. Drinking water. Method for determination of total hardness content. Available at: https://znaytovar.ru/gost/2/GOST_415172_Voda_pitevaya_Meto.html

Pro zatverdzhennia metodychnykh vkazivok "Sanitarno-mikrobiolohichnyi kontrol yakosti pytnoi vody". Verkhovna Rada of Ukraine. Available at: https://zakon.rada.gov.ua/rada/show/v0060282-05#Text

Pro zatverdzhennia metodychnykh rekomendatsiyi "Vyznachennia naibilsh virohidnoho chysla mikroorhanizmiv u vodi z vykorystanniam testiv diahnostychnykh Quanti-Disc ta SimPlate". Verkhovna Rada of Ukraine. Available at: https://zakon.rada.gov.ua/rada/show/v0138282-08#Text

Metodychni vkazivky po sanitarno-mikrobiolohichnomu analizu vody poverkhnevykh vodoim. Available at: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=72438


👁 235
⬇ 176
Published
2021-09-15
How to Cite
Serdiuk, V., & Maksin, V. (2021). Creation of an observation network for assessment of the impact of the pig complex on the groundwater aquifer. EUREKA: Life Sciences, (5), 35-45. https://doi.org/10.21303/2504-5695.2021.002062
Section
Ecology