Evaluation of cytotoxic activity of live toxoplasma gondii tachyzoites and toxoplasma antigen on MCF-7 human breast cancer cell line
Abstract
The aim of this study was to investigate the cytotoxic potency of live Toxoplasma gondii tachyzoites as well as Toxoplasma antigen on MCF-7 human breast cancer cell line. Cancer cell lines are considered an essential preliminary step towards in-vitro investigation of the potential antineoplastic impact of novel chemotherapeutic agents. Pathogens, including viruses, bacteria, and parasites are noticeably under investigation, considering their potential antineoplastic activity. Some have attained a steady position in the clinical field as hepatitis B virus, human papilloma virus and BCG immunization. Toxoplasma gondii is an apicomplexan parasite with promising antineoplastic activity. In this study, live Toxoplasma tachyzoites provoked a direct cytotoxic effect on MCF-7 in a dose dependent manner, while Toxoplasma antigen didn’t induce such impact.
Skipping the direct cytotoxic effect of Toxoplasma antigen doesn’t totally divert the possible antineoplastic activity of Toxoplasma antigen. Potential alternative immune mediated mechanisms could be an alternative. Further in-vivo studies in different cancer models are mandatory to investigate the underlying mechanisms of antineoplastic activity of Toxoplasma gondii
Downloads
References
Zhang, Y.-B., Pan, X.-F., Chen, J., Cao, A., Zhang, Y.-G., Xia, L. et. al. (2020). Combined lifestyle factors, incident cancer, and cancer mortality: a systematic review and meta-analysis of prospective cohort studies. British Journal of Cancer, 122 (7), 1085–1093. doi: https://doi.org/10.1038/s41416-020-0741-x
Siegel, R. L., Miller, K. D., Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70 (1), 7–30. doi: https://doi.org/10.3322/caac.21590
Chen, L., He, Z., Qin, L., Li, Q., Shi, X., Zhao, S. et. al. (2011). Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity. PLoS ONE, 6 (9), e24407. doi: https://doi.org/10.1371/journal.pone.0024407
Kim, J.-O., Jung, S.-S., Kim, S.-Y., Kim, T. Y., Shin, D.-W., Lee, J.-H., Lee, Y.-H. (2007). Inhibition of Lewis Lung Carcinoma Growth by Toxoplasma gondii through Induction of Th1 Immune Responses and Inhibition of Angiogenesis. Journal of Korean Medical Science, 22 (Suppl), S38. doi: https://doi.org/10.3346/jkms.2007.22.s.s38
Pyo, K.-H., Jung, B.-K., Chai, J.-Y., Shin, E.-H. (2010). Suppressed CD31 Expression in Sarcoma-180 Tumors after Injection with Toxoplasma gondii Lysate Antigen in BALB/c Mice. The Korean Journal of Parasitology, 48 (2), 171. doi: https://doi.org/10.3347/kjp.2010.48.2.171
Hossein, Y., Seyedeh, M., Nahid, S., Nahid, M., Shima, D., Morteza, Y. (2015). Low titer of antibody against Toxoplasma gondii may be related to resistant to cancer. Journal of Cancer Research and Therapeutics, 11 (2), 305. doi: https://doi.org/10.4103/0973-1482.144638
Mohamadi, F., Shakibapour, M., Sharafi, S., Andalib, A., Tolouei, S., Yousofi Darani, H. (2019). Anti-Toxoplasma gondii antibodies attach to mouse cancer cell lines but not normal mouse lymphocytes. Biomedical Reports. doi: https://doi.org/10.3892/br.2019.1186
Ferreira, D., Adega, F., Chaves, R. (2013). The Importance of Cancer Cell Lines as in vitro Models in Cancer Methylome Analysis and Anticancer Drugs Testing. Oncogenomics and Cancer Proteomics - Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer. doi: https://doi.org/10.5772/53110
Dai, X., Cheng, H., Bai, Z., Li, J. (2017). Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. Journal of Cancer, 8 (16), 3131–3141. doi: https://doi.org/10.7150/jca.18457
Comşa, Ş., Cîmpean, A. M., Raica, M. (2015). The story of MCF-7 breast cancer cell line 40 years of experience in research. Anticancer Research, 35, 3147–3154.
Eissa, M. M., El-Azzouni, M. Z., Mady, R. F., Fathy, F. M., Baddour, N. M. (2012). Initial characterization of an autoclaved Toxoplasma vaccine in mice. Experimental Parasitology, 131 (3), 310–316. doi: https://doi.org/10.1016/j.exppara.2012.05.001
Hamid, B., Schlosser-Brandenburg, J., Bechtold, L., Ebner, F., Rausch, S., Hartmann, S. (2021). Early Immune Initiation by Porcine Cells following Toxoplasma gondii Infection versus TLR Ligation. Microorganisms, 9 (9), 1828. doi: https://doi.org/10.3390/microorganisms9091828
Rajkapoor, B., Sankari, M., Sumithra, M., Anbu, J., Harikrishnan, N., Gobinath, M. et. al. (2007). Antitumor and Cytotoxic Effects ofPhyllanthus polyphylluson Ehrlich Ascites Carcinoma and Human Cancer Cell Lines. Bioscience, Biotechnology, and Biochemistry, 71 (9), 2177–2183. doi: https://doi.org/10.1271/bbb.70149
Figueroa, D., Asaduzzaman, M., Young, F. (2019). Effect of Chemotherapeutics and Tocopherols on MCF-7 Breast Adenocarcinoma and KGN Ovarian Carcinoma Cell LinesIn Vitro. BioMed Research International, 2019, 1–13. doi: https://doi.org/10.1155/2019/6146972
Wang, G., Gao, M. (2016). Influence of Toxoplasma gondii on in vitro proliferation and apoptosis of hepatoma carcinoma H7402 cell. Asian Pacific Journal of Tropical Medicine, 9 (1), 63–66. doi: https://doi.org/10.1016/j.apjtm.2015.12.013
Choo, J. D., Lee, J. S., Kang, J. S., Lee, H. S., Yeom, J. Y., Lee, Y. H. (2005). Inhibitory effects of Toxoplasma antigen on proliferation and invasion of human glioma cells. Journal of Korean Neurosurgical Society, 37 (2), 129–136. Available at: https://www.jkns.or.kr/upload/pdf/0042005025.pdf
Saravanan, B. C., Sreekumar, C., Bansal, G. C., Ray, D., Rao, J. R., Mishra, A. K. (2003). A rapid MTT colorimetric assay to assess the proliferative index of two Indian strains of Theileria annulata. Veterinary Parasitology, 113 (3-4), 211–216. doi: https://doi.org/10.1016/s0304-4017(03)00062-1
Guallar-Garrido, S., Julián, E. (2020). Bacillus Calmette-Guérin (BCG) Therapy for Bladder Cancer: An Update. ImmunoTargets and Therapy, 9, 1–11. doi: https://doi.org/10.2147/itt.s202006
Waldman, A. D., Fritz, J. M., Lenardo, M. J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 20 (11), 651–668. doi: https://doi.org/10.1038/s41577-020-0306-5
Arshadi, N., Mousavi, S. L., Amani, J., Nazarian, S. (2020). Immunogenic Potency of Formalin and Heat Inactivated E. coli O157:H7 in Mouse Model Administered by Different Routes. Avicenna journal of medical biotechnology, 12 (3), 194–200.
Rhee, E. G., Mendez, S., Shah, J. A., Wu, C., Kirman, J. R., Turon, T. N. et. al. (2002). Vaccination with Heat-killed Leishmania Antigen or Recombinant Leishmanial Protein and CpG Oligodeoxynucleotides Induces Long-Term Memory CD4+and CD8+T Cell Responses and Protection Against Leishmania major Infection. Journal of Experimental Medicine, 195 (12), 1565–1573. doi: https://doi.org/10.1084/jem.20020147
Mutapi, F., Billingsley, P. F., Secor, W. E. (2013). Infection and treatment immunizations for successful parasite vaccines. Trends in Parasitology, 29 (3), 135–141. doi: https://doi.org/10.1016/j.pt.2013.01.003
Baird, J. R., Byrne, K. T., Lizotte, P. H., Toraya-Brown, S., Scarlett, U. K., Alexander, M. P. et. al. (2012). Immune-Mediated Regression of Established B16F10 Melanoma by Intratumoral Injection of AttenuatedToxoplasma gondiiProtects against Rechallenge. The Journal of Immunology, 190 (1), 469–478. doi: https://doi.org/10.4049/jimmunol.1201209
Sanders, K. L., Fox, B. A., Bzik, D. J. (2015). AttenuatedToxoplasma gondiitherapy of disseminated pancreatic cancer generates long-lasting immunity to pancreatic cancer. OncoImmunology, 5 (4), e1104447. doi: https://doi.org/10.1080/2162402x.2015.1104447
Sanders, K. L., Fox, B. A., Bzik, D. J. (2015). Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations. Cancer Immunology Research, 3 (8), 891–901. doi: https://doi.org/10.1158/2326-6066.cir-14-0235
Hafez, E. N., Moawed, F. S. M., Abdel-Hamid, G. R., Elbakary, N. M. (2020). Gamma Radiation-Attenuated Toxoplasma gondii Provokes Apoptosis in Ehrlich Ascites Carcinoma-Bearing Mice Generating Long-Lasting Immunity. Technology in Cancer Research & Treatment, 19, 153303382092659. doi: https://doi.org/10.1177/1533033820926593
Jabari, S., Keshavarz, H., Salimi, M., Morovati, H., Mohebali, M., Shojaee, S. (2018). In vitro culture of Toxoplasma gondii in HeLa, Vero, RBK and A549 cell lines. Le infezioni in medicina, 26 (2), 145–147. Available at: https://pubmed.ncbi.nlm.nih.gov/29932087/
Fox, B. A., Sanders, K. L., Rommereim, L. M., Guevara, R. B., Bzik, D. J. (2016). Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity. PLOS Genetics, 12 (7), e1006189. doi: https://doi.org/10.1371/journal.pgen.1006189
Copyright (c) 2022 Maha M. Eissa, Maha R. Gaafar, Layla K. Younis, Cherine A. Ismail, Nahla El Skhawy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.