Genetic testing of allelic variants of PIZ (GLU342Lys, RS28929474) and PIS (GLU264Val, RS17580) of SERPINA1 gene in children with bronchial asthma

Keywords: SERPINA1 gene, Alpha1-antitrypsin, bronchial asthma, codominance, heterozygous, liver, lungs, genotype, phenotype, recessive


According to world publications, mutations in the SERPINA1 gene may be a genetic risk factor for severe chronic obstructive pulmonary disease and, consequently, rapid progression of respiratory dysfunction. This disease leads to a decrease in the level of alpha-1-antitrypsin protein. It is inherited by autosomal recessive type, but there are registered cases of codominance. In the absence of treatment, diseases of the respiratory system become chronic and lead to disability in adulthood.

Early diagnosis of AAT deficiency is important to prevent complications and reduce mortality among people with this pathology. Due to these factors, genetic testing of SERPINA1 gene mutations in children with chronic lung diseases is appropriate to detect and prevent severe complications, associated with AATD.

The aim of this work is to improve the effectiveness of early diagnosis of AAT deficiency in children with bronchial asthma and recurrent obstructive bronchitis by identifying different genotypes and phenotypes of A1AT deficiency, studying their relationship with the clinical course of respiratory diseases in children


Download data is not yet available.


Chumachenko, N. G. (2016). Clinical and anamnestic features of bronchial asthma in children from an ecologically unfavorable region. PERINATOLOGIYA I PEDIATRIYA, 67 (3), 98–101. doi:

Duka, K. D., Il'chenko, S. I., Ivanus', S. G. (2013). Hronichniy bronhit u ditey ta pidlitkiv – mynule, suchasne ta maybutne. Dnipropetrovs'k, 300.

Gramegna, A., Aliberti, S., Confalonieri, M., Corsico, A., Richeldi, L., Vancheri, C., Blasi, F. (2018). Alpha-1 antitrypsin deficiency as a common treatable mechanism in chronic respiratory disorders and for conditions different from pulmonary emphysema? A commentary on the new European Respiratory Society statement. Multidisciplinary Respiratory Medicine, 13 (1). doi:

Kueppers, F., Sanders, C. (2017). State-of-the-art testing for alpha-1 antitrypsin deficiency. Allergy and Asthma Proceedings, 38 (2), 108–114. doi:

Köhnlein, T., Welte, T. (2008). Alpha-1 Antitrypsin Deficiency: Pathogenesis, Clinical Presentation, Diagnosis, and Treatment. The American Journal of Medicine, 121 (1), 3–9. doi:

Torres-Durán, M., Lopez-Campos, J. L., Barrecheguren, M., Miravitlles, M., Martinez-Delgado, B., Castillo, S. et. al. (2018). Alpha-1 antitrypsin deficiency: outstanding questions and future directions. Orphanet Journal of Rare Diseases, 13 (1). doi:

Siri, D., Farah, H., Hogarth, D. K. (2013). Distinguishing alpha1-antitrypsin deficiency from asthma. Annals of Allergy, Asthma & Immunology, 111 (6), 458–464. doi:

Chapman, K. R., Burdon, J. G. W., Piitulainen, E., Sandhaus, R. A., Seersholm, N., Stocks, J. M. et. al. (2015). Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. The Lancet, 386 (9991), 360–368. doi:

Melnik, S. I., Vlasov, N. N., Pinevskaya, M. V., Orlova, E. A., Starevskaya, S. V., Melnikova, I. Y. (2016). Alpha-1-Antitrypsin Deficiency in Children: Case Series. Current Pediatrics, 15 (6), 619–624. doi:

Kozlov, V. K., Lebed'ko, O. A., Pichugina, S. V. (2019). Aktual'nye voprosy khronicheskikh nespetsificheskikh zabolevaniy legkikh u detey. Voprosy prakticheskoy pediatrii, 3, 22–32.

McElvaney, G. N., Sandhaus, R. A., Miravitlles, M., Turino, G. M., Seersholm, N., Wencker, M., Stockley, R. A. (2020). Clinical considerations in individuals with α1-antitrypsin PI*SZ genotype. European Respiratory Journal, 55 (6), 1902410. doi:

Kaczor, M. P., Sanak, M., Szczeklik, A. (2007). Rapid and Inexpensive Detection of α1-Antitrypsin Deficiency-Related Alleles S and Z by a Real-Time Polymerase Chain Reaction Suitable for a Large-Scale Population-Based Screening. The Journal of Molecular Diagnostics, 9 (1), 99–104. doi:

Makukh, H. V., Zastavna, D. V., Tyrkus, M. Y., Tretiak, B. I., Chorna, L. B. (2008). Pat. No. 32044 UA. Method for separation of dna from leucocytes of peripheral blood. No. u200801896; declareted: 14.02.2008; published: 25.04.2008, Bul. No. 8. Available at:

Campos, M. A., Lascano, J. (2014). α1 Antitrypsin deficiency: current best practice in testing and augmentation therapy. Therapeutic Advances in Respiratory Disease, 8 (5), 150–161. doi:

Luisetti, M., Seersholm, N. (2004). α1-Antitrypsin deficiency • 1: Epidemiology of α1-antitrypsin deficiency. Thorax, 59 (2), 164–169. doi:

Casas, F., Blanco, I., Martínez, M. T., Bustamante, A., Miravitlles, M., Cadenas, S. et. al. (2015). Actualización sobre indicaciones de búsqueda activa de casos y tratamiento con alfa-1 antitripsina por vía intravenosa en pacientes con enfermedad pulmonar obstructiva crónica asociada a déficit de alfa-1 antitripsina. Archivos de Bronconeumología, 51 (4), 185–192. doi:

Blanco, I., Bueno, P., Diego, I., Pérez-Holanda, S., Casas-Maldonado, F., Esquinas, C., Miravitlles, M. (2017). Alpha-1 antitrypsin Pi*Z gene frequency and Pi*ZZ genotype numbers worldwide: an update. International Journal of Chronic Obstructive Pulmonary Disease, 12, 561–569. doi:

Dahl, M. (2005). The protease inhibitor PI*S allele and COPD: a meta-analysis. European Respiratory Journal, 26 (1), 67–76. doi:

Dahl, M., Tybjærg-Hansen, A., Lange, P., Vestbo, J., Nordestgaard, B. G. (2002). Change in Lung Function and Morbidity from Chronic Obstructive Pulmonary Disease in α1-Antitrypsin MZ Heterozygotes: A Longitudinal Study of the General Population. Annals of Internal Medicine, 136 (4), 270. doi:

Ferrarotti, I., Thun, G. A., Zorzetto, M., Ottaviani, S., Imboden, M., Schindler, C. et. al. (2012). Serum levels and genotype distribution of α1-antitrypsin in the general population. Thorax, 67 (8), 669–674. doi:

Hersh, C. P. (2004). Chronic obstructive pulmonary disease in 1-antitrypsin PI MZ heterozygotes: a meta-analysis. Thorax, 59 (10), 843–849. doi:

Komorowski, M., Szpechcinski, A., Debek, E., Duk, K., Zdral, A., Florczuk, M. et. al. (2017). The allelic frequency for S and Z mutations in the SERPINA1 gene in NSCLC patients from Poland. Molecular Pathology and Functional Genomics. doi:

Shapira, G., Shomron, N., Gurwitz, D. (2020). Ethnic differences in alpha‐1 antitrypsin deficiency allele frequencies may partially explain national differences in COVID‐19 fatality rates. The FASEB Journal, 34 (11), 14160–14165. doi:

Kumar, M., Bhadoria, D. P., Dutta, K., Kumar F., M., Singh, B., Singh, S. et. al. (2012). Theα1ATandTIMP-1Gene Polymorphism in the Development of Asthma. Comparative and Functional Genomics, 2012, 1–10. doi:

Da Costa, C. H., Noronha Filho, A. J., Marques e Silva, R. M. F., da Cruz, T. F., de Oliveira Monteiro, V., Pio, M., Rufino, R. L. (2019). Alpha 1-antitrypsin deficiency in patients with chronic obstructive pulmonary disease patients: is systematic screening necessary? BMC Research Notes, 12 (1). doi:

Herth, F. J., Sandhaus, R. A., Turner, A. M., Sucena, M., Welte, T., Greulich, T. (2021). Alpha 1 Antitrypsin Therapy in Patients with Alpha 1 Antitrypsin Deficiency: Perspectives from a Registry Study and Practical Considerations for Self-Administration During the COVID-19 Pandemic. International Journal of Chronic Obstructive Pulmonary Disease, 16, 2983–2996. doi:

👁 11
⬇ 9
How to Cite
Shymanska, I., TrutiakО., LychkovskaО., Makukh, H., & Akopyan, H. (2022). Genetic testing of allelic variants of PIZ (GLU342Lys, RS28929474) and PIS (GLU264Val, RS17580) of SERPINA1 gene in children with bronchial asthma. EUREKA: Life Sciences, (2), 36-44.
Biochemistry, Genetics and Molecular Biology