INTEGRATED USE OF MAGNETITE IN ENVIRONMENTAL PROTECTION MEASURES

Keywords: iron-containing solutions, ferrite method, magnetite, flue gases, carbon monoxide, build-up method, catalyst, red lead

Abstract

The object of research: magnetite obtained by using the ferritic method for the purification of iron-containing solutions.

Problem to be solved: a comprehensive solution to the problem of using magnetite, obtained as a result of using the ferrite method for purifying iron-containing solutions, as a catalyst for the oxidation of carbon monoxide and its further utilization in the production of building materials.

The main scientific results: it has been shown that the magnetite precipitate formed during the processing of pickling solutions by the ferrite method can be used as a cheap, affordable and effective catalyst for the oxidation of carbon monoxide from flue gases of industrial enterprises, the disposal of which after long-term use does not create problems due to its stability and inertness.

Field of practical use of research results: the use of the ferrite method in the purification of pickling solutions of metallurgical enterprises provides not only an increase in the efficiency of water purification, but also leads to the introduction of waste-free technology. The decisive factor will be the use of magnetite as sludge of the use of ferrite technology to solve the problem of reducing flue gas emissions from the production of electrodes for the metallurgical industry, which include toxic carbon monoxide.

Innovative technology product: waste-free technology for the processing of pickling solutions by the ferrite method with the formation of a product with magnetic and catalytic properties, further processing of which consists in using red lead iron as a pigment in the production of building materials.

Scope of the innovative technology product: oxidation of carbon monoxide from industrial flue gases, followed by the use of red lead as a pigment.

Downloads

Download data is not yet available.

Author Biographies

Olena Ivanenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institutе»

Department of Ecology and Technology of Plant Polymers

Vyacheslav Radovenchyk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institutе»

Department of Ecology and Technology of Plant Polymers

Tatyana Overchenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institutе»

Department of Ecology and Technology of Plant Polymers

Іaroslav Radovenchyk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institutе»

Department of Ecology and Technology of Plant Polymers

References

Radovenchyk, V. M., Ivanenko, O. I., Radovenchyk, Ya. V., Krysenko, T. V. (2020). Zastosuvannia ferytnykh materialiv v protsesakh ochyshchennia vody. Bila Tserkva: Vydavnytstvo O. V. Pshonkivskyi, 215.

Tekhnologiia ochistki stochnykh vod ot ionov tiazhelykh metallov metodom ferritizatsii. Available at: http://www.aquapromspb.ru/vou/reagentnaya-obrabotka Last accessed: 25.10.2020

Lou, J.-C., Chang, C.-K. (2006). Catalytic Oxidation of CO Over a Catalyst Produced in the Ferrite Process. Environmental Engineering Science, 23 (6), 1024–1032. doi: http://doi.org/10.1089/ees.2006.23.1024

Ivanenko, O. I., Nosachova, Yu. V., Overchenko, T. A., Nakonechna, M. V. (2020). Features of the use of catalysts of various types in the processes of neutralization of carbon monoxide of flue gases. Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical Engineering, Ecology and Resource Saving, 1 (19), 22–42. doi: http://doi.org/10.20535/2617-9741.1.2020.207808

Kunevich, A. V., Podolskii, A. V., Sidorov, I. N. (2004). Ferrity: Entsiklopedicheskii spravochnik. Magnity i magnitnye sistemy. Vol. 1. Saint Petersburg: Izdatelstvo «Lik», 358.

Betekhtin, A. G. (2007). Kurs mineralogii. Moscow: Knizhnii dom "Universitet", 721.

Petrakova, A. V., Urusov, A. E., Kostenko, S. N., Pridvorova, S. M., Vasilev, M. A., Zherdev, A. V. (2013).Sintez magnitnykh nanochastits oksida zheleza dlia primeneniia v immunoanalize. Sovremennye problemy nauki i obrazovaniia, 5. Available at: http://www.science-education.ru/ru/article/view?id=10559 Last accessed: 25.10.2020

Hyeon, T. (2002). Chemical synthesis of magnetic nanoparticles. Chemical Communications, 8, 927–934. doi: 3http://doi.org/10.1039/b207789b

Dikanskii, Iu. I., Zakinian, A. R., Konstantinova, N. Iu. (2008). O magnitnoi pronitsaemosti magnitodielektricheskoi emulsii. Zhurnal tekhnicheskoi fiziki, 78 (1), 21–26.

Radovenchik, Ia. V., Romanenko, M. І., Radovenchik, V. M. (2017). Zalіzomіstkі sorbenti dlia ochischennia vodi vіd naftoproduktіv. Ekologiia i promyshlennost, 1 (50), 74–80.

Akhlebinina, A. A., Moskovskaia, I. F., Iuschenko, V. V., Romanovskii, B. V. (2006). Kataliticheskoe okislenie metanola na vysokodispersnom okside zheleza v mikro- i mezoporistykh molekuliarnykh sitakh. Zhurnal fizicheskoi khimii, 80 (1), 72–76.

Ivanenko, O., Gomelya, N., Panov, Y., Overchenko, T. (2020). Тechnical solutions for reducing emissions of carbon monoxide with flue gases of furnaces for baking electrodes. Bulletin of the National Technical University «KhPI». Series: New Solutions in Modern Technology, 3 (5), 45–52. doi: http://doi.org/10.20998/2413-4295.2020.01.07

Petrov, A. Iu., Sinitsin, S. A. (2014). Kataliticheskaia detoksikatsiia dymovykh gazov v neftepererabatyvaiuschei promyshlennosti. Tekhnologiia nefti i gaza, 2 (91), 18–23.

Kharisov, B. I., Dias, H. V. R., Kharissova, O. V. (2019). Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12 (7), 1234–1246. doi: http://doi.org/10.1016/j.arabjc.2014.10.049


👁 90
⬇ 90
Published
2020-10-30
How to Cite
Ivanenko, O., Radovenchyk, V., Overchenko, T., & RadovenchykІ. (2020). INTEGRATED USE OF MAGNETITE IN ENVIRONMENTAL PROTECTION MEASURES. ScienceRise, (5), 57-65. https://doi.org/10.21303/2313-8416.2020.001462
Section
Innovative technologies in industry