RESEARCH OF REPARATIVE MECHANISMS IN THE OPTIC NERVE IN TOXIC NEUROPATHY CAUSED BY Cr (VI)
Abstract
Intoxication lesions of the optic nerve (toxic optic neuropathy, TON) most often occur under the influence of exogenous factors, including heavy metals. Сell survival under stress have involves heat shock proteins (HSPs).
The aim of the research. To assess the optic nerve’s immunoreactivity to heat shock proteins of the HSP70 and HSP90α families and reveal its relationship with the severity of morphological changes in toxic optic neuropathy caused by Cr (VI).
Materials and methods. The study was conducted on 48 mature male rats. The experimental groups were given to drink water with Cr(VI) for 20, 40 and 60 days. This type of water is typical for the water basins in the northern districts of the Sumy region. Optic nerves сhanges under the influence of Cr(VI) have investigated by the morphometric method. Neuroglial cells and capillary endothelial cells were assessed by immunohistochemistry by HSP70α and HSP90 expression for intensity and spatial distribution.
Results. The data analysis revealed that Cr (VI) has a neurotoxic effect on the optic nerve with the development of edema, which is manifested by the thickening of nerve fibers. The dynamics of HSP70 immunoexpression in the endothelium of the optic nerve capillaries of rats on 20 and 40 experimental days was characterized by stable values and was 1.5 times higher than the control. The maximum number of positively stained cells for the HSP70 marker was detected in endothelial cells of the microvasculature for 60 days – 82.44±12.42 %. HSP70 levels in neuroglia cells of optic nerve have decreased on day 40 (55.66±11.56% p=0.05) and lower than the control (70.44±4.81 %.) group. Optic nerve capillaries was highest immunoactivity on HSP90 in group II endothelial cells – 51.22±14.57% (p=0.05). The activity of HSP90α protein in optic neuroglia cells was characterized by a gradual increase in the duration of the experiment and was higher by 12, 4 % in experimental group III (81.77±21.67 %) compared with control (71.66±4.95 %).
Conclusions. Our study provides an insight into the significant difference in the immunoreactivity of heat shock proteins of the HSP70 and HSP90α families in neuroglia and endothelial cells of the optic nerve capillaries under the influence of Cr(VI).
The results obtained suggest that Cr (VI) has a neurotoxic effect on the optic nerve with the development of edema, which is manifested by the thickening of nerve fibers. A comparison of the dynamics of the development of the dystrophic process in the optic nerve with the results of the immunohistochemical analysis showed, that an increase in the thickness of nerve fibers is accompanied by an increase in immunoreactive neuroglial cells (HSP90α) and endothelial cells (HSP70).
Downloads
References
Kesler, A, Pianka, P. (2003). Toxic optic neuropathy. Current Neurology and Neuroscience Reports, 3 (5), 410–414. doi: http://doi.org/10.1007/s11910-003-0024-y DOI: https://doi.org/10.1007/s11910-003-0024-y
Sharma, R., Sharma, P. (2011). Toxic optic neuropathy. Indian Journal of Ophthalmology, 59 (2), 137–141. doi: http://doi.org/10.4103/0301-4738.77035 DOI: https://doi.org/10.4103/0301-4738.77035
Abri Aghdam, K., Zand, A., Soltan Sanjari, M. (2019). Bilateral Optic Disc Edema in a Patient with Lead Poisoning. Journal of ophthalmic & vision research, 14 (4), 513–517. doi: http://doi.org/10.18502/jovr.v14i4.5465 DOI: https://doi.org/10.18502/jovr.v14i4.5465
Tong, S., Li, H., Wang, L., Tudi, M., Yang, L. (2020). Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019 – A Systematic Review. International Journal of Environmental Research and Public Health, 17 (9), 3099. doi: http://doi.org/10.3390/ijerph17093099 DOI: https://doi.org/10.3390/ijerph17093099
Tytła, M. (2019). Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland – Case Study. International Journal of Environmental Research and Public Health, 16 (13), 2430. doi: http://doi.org/10.3390/ijerph16132430 DOI: https://doi.org/10.3390/ijerph16132430
Sharma, P., Bihari, V., Agarwal, S. K., Verma, V., Kesavachandran, C. N., Pangtey, B. S. et. al. (2012). Groundwater Contaminated with Hexavalent Chromium [Cr (VI)]: A Health Survey and Clinical Examination of Community Inhabitants (Kanpur, India). PLoS ONE, 7 (10), e47877. doi: http://doi.org/10.1371/journal.pone.0047877 DOI: https://doi.org/10.1371/journal.pone.0047877
Megremi, I., Vasilatos, C., Vassilakis, E., Economou-Eliopoulos, M. (2019). Spatial diversity of Cr distribution in soil and groundwater sites in relation with land use management in a Mediterranean region: The case of C. Evia and Assopos-Thiva Basins, Greece. Science of The Total Environment, 651, 656–667. doi: http://doi.org/10.1016/j.scitotenv.2018.09.186 DOI: https://doi.org/10.1016/j.scitotenv.2018.09.186
Doorn, P. F., Campbell, P. A., Worrall, J., Benya, P. D., McKellop, H. A., Amstutz, H. C. (1998). Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. Journal of Biomedical Materials Research, 42 (1), 103–111. doi: http://doi.org/10.1002/(sici)1097-4636(199810)42:1<103::aid-jbm13>3.0.co;2-m DOI: https://doi.org/10.1002/(SICI)1097-4636(199810)42:1<103::AID-JBM13>3.0.CO;2-M
Catelas, I., Bobyn, J. D., Medley, J. B., Krygier, J. J., Zukor, D. J., Huk, O. L. (2003). Size, shape, and composition of wear particles from metal-metal hip simulator testing: Effects of alloy and number of loading cycles. Journal of Biomedical Materials Research, 67A (1), 312–327. doi: http://doi.org/10.1002/jbm.a.10088 DOI: https://doi.org/10.1002/jbm.a.10088
Mahendra, G., Pandit, H., Kliskey, K., Murray, D., Gill, H. S., Athanasou, N. (2009). Necrotic and inflammatory changes in metal-on-metal resurfacing hip arthroplasties. Acta Orthopaedica, 80 (6), 653–659. doi: http://doi.org/10.3109/17453670903473016 DOI: https://doi.org/10.3109/17453670903473016
Korovessis, P., Petsinis, G., Repanti, M., Repantis, T. (2006). Metallosis After Contemporary Metal-on-Metal Total Hip Arthroplasty. The Journal of Bone & Joint Surgery, 88 (6), 1183–1191. doi: http://doi.org/10.2106/jbjs.d.02916 DOI: https://doi.org/10.2106/JBJS.D.02916
Campbell, J. R., Estey, M. P. (2013). Metal release from hip prostheses: cobalt and chromium toxicity and the role of the clinical laboratory. Clinical Chemistry and Laboratory Medicine, 51 (1), 213–220. doi: http://doi.org/10.1515/cclm-2012-0492 DOI: https://doi.org/10.1515/cclm-2012-0492
Mabilleau, G., Kwon, Y.-M., Pandit, H., Murray, D. W., Sabokbar, A. (2008). Metal-on-metal hip resurfacing arthroplasty: A review of periprosthetic biological reactions. Acta Orthopaedica, 79 (6), 734–747. doi: http://doi.org/10.1080/17453670810016795 DOI: https://doi.org/10.1080/17453670810016795
Iavicoli, I., Falcone, G., Alessandrelli, M., Cresti, R., De Santis, V., Salvatori, S. et. al. (2006). The release of metals from metal-on-metal surface arthroplasty of the hip. Journal of Trace Elements in Medicine and Biology, 20 (1), 25–31. doi: http://doi.org/10.1016/j.jtemb.2005.10.002 DOI: https://doi.org/10.1016/j.jtemb.2005.10.002
Apel, W., Stark, D., Stark, A., O’Hagan, S., Ling, J. (2012). Cobalt–chromium toxic retinopathy case study. Documenta Ophthalmologica, 126 (1), 69–78. doi: http://doi.org/10.1007/s10633-012-9356-8 DOI: https://doi.org/10.1007/s10633-012-9356-8
Ng, S., Ebneter, A., Gilhotra, J. (2013). Hip-implant related chorio-retinal cobalt toxicity. Indian Journal of Ophthalmology, 61 (1), 35–37. doi: http://doi.org/10.4103/0301-4738.105053 DOI: https://doi.org/10.4103/0301-4738.105053
Garcia, M. D., Hur, M., Chen, J. J., Bhatti, M. T. (2020). Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature. American Journal of Ophthalmology Case Reports, 17, 100606. doi: http://doi.org/10.1016/j.ajoc.2020.100606 DOI: https://doi.org/10.1016/j.ajoc.2020.100606
Liu, H., Chen, H., Jing, J., Ma, X. (2011). Cloning and characterization of the HSP90 beta gene from Tanichthys albonubes Lin (Cyprinidae): effect of copper and cadmium exposure. Fish Physiology and Biochemistry, 38 (3), 745–756. doi: http://doi.org/10.1007/s10695-011-9556-2 DOI: https://doi.org/10.1007/s10695-011-9556-2
Nadeau, D., Corneau, S., Plante, I., Morrow, G., Tanguay, R. M. (2001). Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell stress & chaperones, 6 (2), 153–163. doi: http://doi.org/10.1379/1466-1268(2001)006<0153:efhaab>2.0.co;2 DOI: https://doi.org/10.1379/1466-1268(2001)006<0153:EFHAAB>2.0.CO;2
Pearl, L. H., Prodromou, C. (2006). Structure and Mechanism of the Hsp90 Molecular Chaperone Machinery. Annual Review of Biochemistry, 75 (1), 271–294. doi: http://doi.org/10.1146/annurev.biochem.75.103004.142738 DOI: https://doi.org/10.1146/annurev.biochem.75.103004.142738
Chang, Y.-W., Sun, Y.-J., Wang, C., Hsiao, C.-D. (2008). Crystal Structures of the 70-kDa Heat Shock Proteins in Domain Disjoining Conformation. Journal of Biological Chemistry, 283 (22), 15502–15511. doi: http://doi.org/10.1074/jbc.m708992200 DOI: https://doi.org/10.1074/jbc.M708992200
Avdonin, P. P., Markitantova, Y. V., Poplinskaya, V. A., Grigoryan, E. N. (2013). Determination of mRNA-transcripts and heat shock proteins HSP70 and HSP90 in the retina of the adult Spanish Ribbed Newt Pleurodeles waltl. Biology Bulletin, 40 (4), 343–350. doi: http://doi.org/10.1134/s106235901304002x DOI: https://doi.org/10.1134/S106235901304002X
Tytell, M., Greenberg, S. G., Lasek, R. J. (1986). Heat shock-like protein is transferred from glia to axon. Brain Research, 363 (1), 161–164. doi: http://doi.org/10.1016/0006-8993(86)90671-2 DOI: https://doi.org/10.1016/0006-8993(86)90671-2
Nita, M., Grzybowski, A. (2016). The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative Medicine and Cellular Longevity, 2016, 1–23. doi: http://doi.org/10.1155/2016/3164734 DOI: https://doi.org/10.1155/2016/3164734
Maresca, A., la Morgia, C., Caporali, L., Valentino, M. L., Carelli, V. (2013). The optic nerve: A “mito-window” on mitochondrial neurodegeneration. Molecular and Cellular Neuroscience, 55, 62–76. doi: http://doi.org/10.1016/j.mcn.2012.08.004 DOI: https://doi.org/10.1016/j.mcn.2012.08.004
Xiao, F., Li, Y., Dai, L., Deng, Y., Zou, Y., Li, P. (2012). Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes. International Journal of Molecular Medicine, 30 (3), 629–635. doi: http://doi.org/10.3892/ijmm.2012.1031 DOI: https://doi.org/10.3892/ijmm.2012.1031
Mary Momo, C., Ferdinand, N., Omer Bebe, N., Alexane Marquise, M., Augustave, K., Bertin Narcisse, V. et. al. (2019). Oxidative Effects of Potassium Dichromate on Biochemical, Hematological Characteristics, and Hormonal Levels in Rabbit Doe (Oryctolagus cuniculus). Veterinary Sciences, 6 (1), 30. doi: http://doi.org/10.3390/vetsci6010030 DOI: https://doi.org/10.3390/vetsci6010030
Bucio, L., Garcı́a, C., Souza, V., Hernández, E., González, C., Betancourt, M., Gutiérrez-Ruiz, M. C. (1999). Uptake, cellular distribution and DNA damage produced by mercuric chloride in a human fetal hepatic cell line. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 423 (1-2), 65–72. doi: http://doi.org/10.1016/s0027-5107(98)00226-7 DOI: https://doi.org/10.1016/S0027-5107(98)00226-7
Castellino, N., Aloj, S. (1969). Intracellular distribution of lead in the liver and kidney of the rat. Occupational and Environmental Medicine, 26 (2), 139–143. doi: http://doi.org/10.1136/oem.26.2.139 DOI: https://doi.org/10.1136/oem.26.2.139
Bolaños, J. P., Almeida, A., Fernández, E., Medina, J. M., Land, J. M., Clark, J. B., Heales, S. J. R. (1997). Potential mechanisms for nitric oxide-mediated impairment of brain mitochondrial energy metabolism. Biochemical Society Transactions, 25 (3), 944–949. doi: http://doi.org/10.1042/bst0250944 DOI: https://doi.org/10.1042/bst0250944
Pandey, P., Saleh, A., Nakazawa, A., Kumar, S., Srinivasula, S. M., Kumar, V., Weichselbaum, R., Nalin, C., Alnemri, E. S., Kufe, D., Kharbanda, S. (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. The EMBO journal, 19 (16), 4310–4322. doi: http://doi.org/10.1093/emboj/19.16.4310 DOI: https://doi.org/10.1093/emboj/19.16.4310
Gurbuxani, S., Schmitt, E., Cande, C., Parcellier, A., Hammann, A., Daugas, E. et. al. (2003). Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene, 22 (43), 6669–6678. doi: http://doi.org/10.1038/sj.onc.1206794 DOI: https://doi.org/10.1038/sj.onc.1206794
Cavalcante, G. C., Schaan, A. P., Cabral, G. F., Santana-da-Silva, M. N., Pinto, P., Vidal, A. F., Ribeiro-dos-Santos, Â. (2019). A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. International Journal of Molecular Sciences, 20 (17), 4133. doi: http://doi.org/10.3390/ijms20174133 DOI: https://doi.org/10.3390/ijms20174133
Zou, H., Henzel, W. J., Liu, X., Lutschg, A., Wang, X. (1997). Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3. Cell, 90 (3), 405–413. doi: http://doi.org/10.1016/s0092-8674(00)80501-2 DOI: https://doi.org/10.1016/S0092-8674(00)80501-2
Jedlicka, P., Mortin, M. A., Wu, C. (1997). Multiple functions of Drosophilaheat shock transcription factorin vivo. The EMBO Journal, 16 (9), 2452–2462. doi: http://doi.org/10.1093/emboj/16.9.2452 DOI: https://doi.org/10.1093/emboj/16.9.2452
Ali, A., Bharadwaj, S., O’Carroll, R., Ovsenek, N. (1998). HSP90 Interacts with and Regulates the Activity of Heat Shock Factor 1 in Xenopus Oocytes. Molecular and Cellular Biology, 18 (9), 4949–4960. doi: http://doi.org/10.1128/mcb.18.9.4949 DOI: https://doi.org/10.1128/MCB.18.9.4949
Dou, F., Chang, X., Ma, D. (2007). Hsp90 Maintains the Stability and Function of the Tau Phosphorylating Kinase GSK3β. International Journal of Molecular Sciences, 8 (1), 51–60. doi: http://doi.org/10.3390/i8010060 DOI: https://doi.org/10.3390/i8010060
Zou, J., Guo, Y., Guettouche, T., Smith, D. F., Voellmy, R. (1998). Repression of Heat Shock Transcription Factor HSF1 Activation by HSP90 (HSP90 Complex) that Forms a Stress-Sensitive Complex with HSF1. Cell, 94 (4), 471–480. doi: http://doi.org/10.1016/s0092-8674(00)81588-3 DOI: https://doi.org/10.1016/S0092-8674(00)81588-3
Abravaya, K., Myers, M. P., Murphy, S. P., Morimoto, R. I. (1992). The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes & Development, 6 (7), 1153–1164. doi: http://doi.org/10.1101/gad.6.7.1153 DOI: https://doi.org/10.1101/gad.6.7.1153
Schoof, N., von Bonin, F., Trümper, L., Kube, D. (2009). HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells. Cell Communication and Signaling, 7 (1). doi: http://doi.org/10.1186/1478-811x-7-17 DOI: https://doi.org/10.1186/1478-811X-7-17
Padmini, E., Usha Rani, M. (2011). Heat-shock protein 90 alpha (HSP90α) modulates signaling pathways towards tolerance of oxidative stress and enhanced survival of hepatocytes of Mugil cephalus. Cell Stress and Chaperones, 16 (4), 411–425. doi: http://doi.org/10.1007/s12192-011-0255-9 DOI: https://doi.org/10.1007/s12192-011-0255-9
Bernstein, S. L., Russell, P., Wong, P., Fishelevich, R., Smith, L. E. (2001). Heat shock protein 90 in retinal ganglion cells: association with axonally transported proteins. Visual Neuroscience, 18 (3), 429–436. doi: http://doi.org/10.1017/s0952523801183094 DOI: https://doi.org/10.1017/S0952523801183094
Ravagnan, L., Gurbuxani, S., Susin, S. A., Maisse, C., Daugas, E., Zamzami, N. et. al. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 3 (9), 839–843. doi: http://doi.org/10.1038/ncb0901-839 DOI: https://doi.org/10.1038/ncb0901-839
Lorenzo, H. K., Susin, S. A., Penninger, J., Kroemer, G. (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death & Differentiation, 6 (6), 516–524. doi: http://doi.org/10.1038/sj.cdd.4400527 DOI: https://doi.org/10.1038/sj.cdd.4400527
Kondrikov, D., Fulton, D., Dong, Z., Su, Y. (2015). Heat Shock Protein 70 Prevents Hyperoxia-Induced Disruption of Lung Endothelial Barrier via Caspase-Dependent and AIF-Dependent Pathways. PLOS ONE, 10 (6), e0129343. doi: http://doi.org/10.1371/journal.pone.0129343 DOI: https://doi.org/10.1371/journal.pone.0129343
Shivers, R. R., Pollock, M., Bowman, P. D., Atkinson, B. G. (1988). The effect of heat shock on primary cultures of brain capillary endothelium: inhibition of assembly of zonulae occludentes and the synthesis of heat-shock proteins. European Journal of Cell Biology, 46 (1), 181–195.
Pournaras, C. J., Rungger-Brändle, E., Riva, C. E., Hardarson, S. H., Stefansson, E. (2008). Regulation of retinal blood flow in health and disease. Progress in Retinal and Eye Research, 27 (3), 284–330. doi: http://doi.org/10.1016/j.preteyeres.2008.02.002 DOI: https://doi.org/10.1016/j.preteyeres.2008.02.002
Doll, D. N., Hu, H., Sun, J., Lewis, S. E., Simpkins, J. W., Ren, X. (2015). Mitochondrial Crisis in Cerebrovascular Endothelial Cells Opens the Blood–Brain Barrier. Stroke, 46 (6), 1681–1689. doi: http://doi.org/10.1161/strokeaha.115.009099 DOI: https://doi.org/10.1161/STROKEAHA.115.009099
Connolly, N. M. C., Theurey, P., Adam-Vizi, V., Bazan, N. G., Bernardi, P., Bolaños, J. P. et. al. (2017). Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death & Differentiation, 25 (3), 542–572. doi: http://doi.org/10.1038/s41418-017-0020-4 DOI: https://doi.org/10.1038/s41418-017-0020-4
Golpich, M., Amini, E., Mohamed, Z., Azman Ali, R., Mohamed Ibrahim, N., Ahmadiani, A. (2016). Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neuroscience & Therapeutics, 23 (1), 5–22. doi: http://doi.org/10.1111/cns.12655 DOI: https://doi.org/10.1111/cns.12655
Copyright (c) 2020 Olena Kuzenko, Yuri Demin, Yevhen Kuzenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.