STUDY OF THE KINETICS OF DRYING IRON (II) SULFATE HEPTAHYDRATE BY FILTRATION METHOD
Abstract
The object of research: kinetics of filtration drying process of iron (II) sulfate heptahydrate.
Solved problem: to obtain the calculated dependence of the kinetics of filtration drying, which predicts the nature of the change in the moisture content of the material in time during the period of complete saturation of the thermal agent with moisture in the range of heights of the material layer 30.10-3–120.10-3 m and the speeds of the thermal agent 0.46–1.61 m/s.
Main scientific results: The kinetics of filtration drying of iron (II) sulfate heptahydrate was investigated at different heights of the material layer and pressure drops over dry material, which means at different speeds of movement of the thermal agent. A certain critical moisture content, which is Wcr=0.065 kg H2O/kg dry mat and the time it reaches at different heights of the material layer and the speeds of movement of the thermal agent. Based on the solution of the system of differential equations of material balance in the layer and the kinetics of drying, the kinetic coefficients for iron (II) sulfate heptahydrate a=15.75 1/m, α=3.03.10-3 1/s were determined, which made it possible to obtain the calculated dependence of the kinetics drying, which predicts the nature of the change in the moisture content of the material over time during the period of complete saturation of the thermal agent with moisture in the range of heights of the material layer H=30.10-3–120.10-3 m and the velocities of the thermal agent υ=0.46–1.61 m/s.
The area of practical application of the results: enterprises for the production of titanium (IV) oxide with the production of iron (II) sulfate heptahydrate as a by-product and enterprises specializing in the manufacture of pigments based on iron (II) sulfate heptahydrate.
Innovative technological product: iron (II) sulfate tetrahydrate (FeSO4•4H2O, rosenite), obtained as a result of drying by the filtration method.
Scope of application of the innovative technological product: in the production technology of iron oxide pigments.
Downloads
References
Savchenko-Pererva, M. V., Barsukova, H. Y. (2020). Reducing the technogenic load on the environment due to the technical solution for the disposal of iron sulphate. Journal of Chemistry and Technologies, 28 (2), 168–176. doi: http://doi.org/10.15421/082018
Kanari, N., Filippova, I., Diot, F., Mochón, J., Ruiz-Bustinza, I., Allain, E., Yvon, J. (2014). Utilization of a waste from titanium oxide industry for the synthesis of sodium ferrate by gas–solid reactions. Thermochimica Acta, 575, 219–225. doi: http://doi.org/10.1016/j.tca.2013.11.008
Kanari, N., Evrard, O., Neveux, N., Ninane, L. (2001). Recycling ferrous sulfate via super-oxidant synthesis. JOM, 53 (11), 32–33. doi: http://doi.org/10.1007/s11837-001-0191-8
Chio, C. H., Sharma, S. K., Muenow, D. W. (2006). The hydrates and deuterates of ferrous sulfate (FeSO4): a Raman spectroscopic study. Journal of Raman Spectroscopy, 38 (1), 87–99. doi: http://doi.org/10.1002/jrs.1623
Kanari, N., Filippova, I., Diot, F., Mochón, J., Ruiz-Bustinza, I., Allain, E., Yvon, J. (2014). Utilization of a waste from titanium oxide industry for the synthesis of sodium ferrate by gas–solid reactions. Thermochimica Acta, 575, 219–225. doi: http://doi.org/10.1016/j.tca.2013.11.008
Rachkova, E. A., Jakusheva, E. A. (1990). Ispol'zovanie sernokislogo zheleza na biohimicheskoj ustanovke. Koks i himija, 8, 45–46.
Glouannec, P., Salagnac, P., Guézenoc, H., Allanic, N. (2008). Experimental study of infrared-convective drying of hydrous ferrous sulphate. Powder Technology, 187 (3), 280–288. doi: http://doi.org/10.1016/j.powtec.2008.03.007
Kruhlova, N. O., Bakhariev, V. S. (2015). Ekolohichno bezpechna tekhnolohiia pererobky shlamiv vyrobnytstva tytanooksydnykh pihmentiv. Ekolohichna bezpeka, 2 (20), 69–76.
Skomorokha, V. N., Zarechnii, V. G., Vorobeva, I. P. (2002). Proizvodstvo dvuokisi titana pigmentnoi sulfatnym sposobom. Sumy, 203.
Kruhlova, N. O. (2014). Utylizatsiia shlamiv vyrobnytstva tytanooksydnykh pihmentiv yak zasib znyzhennia tekhnohennoho navantazhennia na dovkillia. Shostka, 160.
Yavorskyi, V. T., Kalymon, Ya. A., Rubai, O. I. (2015). A study of the effect of iron (III) compoundson oxidation of iron (II) ions by atmospheric oxygen. Eastern-European Journal of Enterprise Technologies, 4 (6 (76)), 13–17. doi: http://doi.org/10.15587/1729-4061.2015.47460
Zarechenyi, V. H. (2005). Utylizatsiia zalizovmisnykh vidkhodiv vyrobnytstva pihmentnoho tytanu(IV) oksydu. Lviv, 20.
Sobol, Kh. S., Markiv, T. Ye., Sanytskyi, M. A., Kohuch, H. V. (2003). Vplyv aktyvnykh mineralnykh dodatkiv na vlastyvosti kompozytsiinykh tsementiv. Visnyk Natsionalnoho universytetu Lvivska politekhnika”. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia”, 488, 274–278.
Huang, P., Deng, S., Zhang, Z., Wang, X., Chen, X., Yang, X., Yang, L. (2015). A sustainable process to utilize ferrous sulfate waste from titanium oxide industry by reductive decomposition reaction with pyrite. Thermochimica Acta, 620, 18–27. doi: http://doi.org/10.1016/j.tca.2015.10.004
Plyshevskii, Iu. S., Tkachov K. V., Garkunov N. V. (1998). Ispolzovanie zheleznogo kuporosa – otkhoda, obrazuiuschegosia v protsesse polucheniia dioksida titana i travleniia zheleza dlia polucheniia sulfata kaliia i «zheleznogo» koagulianta. Ekaterinburg, 110.
Karpovich, E. A., Zarechennii, V. G. (2001). Vovlechenie v proizvodstvo udobrenii kislogo zheleznogo kuporosa. Ekologiia i zdorove cheloveka. Okhrana vodnogo i vozdushnogo basseinov. Utilizatsiia otkhodov, 2, 396–398.
Ivanov, V. G. (2004). Utilizatsiia otkhodov sulfata zheleza. Sotrudnechestvo dlia reshenmia problem otkhodov. Kharkiv, 162–163.
Georgiou, D., Aivazidis, A., Hatiras, J., Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37 (9), 2248–2250. doi: http://doi.org/10.1016/s0043-1354(02)00481-5
Barsukova, A. V., Vakal, S. V., Karpovich, E. A. (2014). Determination of optimal conditions for technology main waste processing titanium production. Izvestiia MGTU, 2 (20), 97–101.
Wang, T., Debelak, K. A., Roth, J. A. (2007). Dehydration of iron(II) sulfate heptahydrate. Thermochimica Acta, 462 (1-2), 89–93. doi: http://doi.org/10.1016/j.tca.2007.07.001
Guarini, G. G. T., Rustici, M. (1988). Heating rate and the dehydration of α•NiSO4•6H2O single crystals. Journal of Thermal Analysis, 34 (2), 487–495. doi: http://doi.org/10.1007/bf01913189
Straszko, J., Olszak-Humienik, M., Możejko, J. (1997). Kinetics of thermal decomposition of ZnSO4•7H2O. Thermochimica Acta, 292 (1-2), 145–150. doi: http://doi.org/10.1016/s0040-6031(96)03114-0
Korinchuk D., Sniezhkin Yu., Bunetskyi. V. (2018). Justification energy-efficient modes of drum dryer operation in production of composite biofuels. Scientific Works, 82 (1). doi: http://doi.org/10.15673/swonaft.v82i1.1017
Tkachuk, M., Stepaniuk, A. (2019). Modernizatsiia barabannoi susharky ustanovky vyrobnytstva morskoi soli. Nauka onlain, 9. Available at: https://nauka-online.com/ua/publications/tehnicheskie-nauki/2019/9/modernizatsiya-barabannoyi-susharki-ustanovki-virobnitstva-morskoyi-soli/
Nizov, V. A., Aisautova, K. A. (2017). Osobennosti obezvozhivaniia kristallogidratov v mikrovolnovom pole na primere mednogo kuporosa. Young Scientist, 9 (143), 111–112.
Hosovskyi, R., Kindzera, D., Atamanyuk, V. (2016). Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chemical Technology and Engineering. Lviv, 105–108. doi: http://doi.org/10.23939/cte2019.01.105
Hosovskyi, R. R., Kindzera, D. P., Atamanyuk, V. M. (2017). The intradiffusion mass transfer during the grinded sunflower stems paranchymal tissue's filtration drying. Scientific Bulletin of UNFU, 27 (6), 112–116. doi: http://doi.org/10.15421/40270622
Atamaniuk, V., Humnytskyi, Ya. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Lviv: Vyd-vo Lviv. politekhniky, 255.
Xia, L., Zhang, H., Wang, B., Yu, C., Fan, X. (2016). Experimental and numerical analysis of oil shale drying in fluidized bed. Drying Technology, 35 (7), 802–814. doi: http://doi.org/10.1080/07373937.2016.1218345
Guo, F., Liu, H., Guo, Y., Zhang, Y., Li, J., Zhao, X., Wu, J. (2021). Occurrence modes of water in gasification fine slag filter cake and drying behavior analysis – A case study. Journal of Environmental Chemical Engineering, 9 (1), 104585. doi: http://doi.org/10.1016/j.jece.2020.104585
Liu, R., Liu, M., Han, X., Yan, J. (2020). Drying characteristics and kinetics analyses for Yimin lignite at various temperatures. Drying Technology, 1–13. doi: http://doi.org/10.1080/07373937.2020.1729174
Li, C., Liao, J.-J., Yin, Y., Mo, Q., Chang, L.-P., Bao, W.-R. (2018). Kinetic analysis on the microwave drying of different forms of water in lignite. Fuel Processing Technology, 176, 174–181. doi: http://doi.org/10.1016/j.fuproc.2018.03.017
Copyright (c) 2021 Nadiia Tsiura, Diana Kindzera, Iryna Huzova, Volodymyr Atamanyuk

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.