# Development of the mathematical model of the kinetics of the stationary process of bio-cleaning with substratic inhibition

• Ganna Bakharieva National Technical University «Kharkiv polytechnic institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002
• Serhii Petrov National Technical University «Kharkiv polytechnic institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002
• Tetiana Falalieieva National Technical University «Kharkiv polytechnic institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002
Keywords: biochemical destruction, substrate inhibition, phenomenological approach, macrokinetic model, specific oxidation rate, pollution concentration

### Abstract

A scientifically sound method for calculating the parameters of bio-cleaning should contain as a basic a reliable mathematical description of the stationary process. The results of stationary laboratory experiments are presented in the coordinates “specific rate of destruction V – concentration ρ”. Statistical processing proves the presence of substrate inhibition for both gaseous and soluble and dissolved harmful substances in water. For an analytical description of the dependence of the biooxidation rate on the concentration of contaminants, a phenomenological approach is applied, taking into account in a simple form two obvious phenomena: the contact of a microorganism with a substrate molecule and the inhibitory effect of the medium on it. The numerical values of empirical dependency coefficients for the studied processes are calculated.

A differential equation is proposed at the macro level that describes the kinetics of biochemical destruction. The concept of a macrokinetic mathematical model of bioremediation is defined as a system of two functions that quantitatively reflect the dependence of the specific oxidation rate of pollution on its concentration and concentration on time, as well as satisfying the relationship between the relationships of the same parameters in differential form. The dependence of concentration on time is defined both in the form of a numerical integration algorithm and in the form of an approximate formula. The adequacy and universality of the proposed model for the studied processes is proved. The advantage of the proposed model of substrate inhibition kinetics is the simplicity of the structure of the basic formula and the ease of determining empirical coefficients based on this. In addition to numerical integration for determining the time of destruction, an approximate analytical solution is found, which can be adequately used in the concentration range of the experimental study. Further research is aimed at developing methods for calculating non-stationary processes in biochemical purification plants of certain specific types

### Author Biographies

Ganna Bakharieva, National Technical University «Kharkiv polytechnic institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of occupational safety and environmental

Serhii Petrov, National Technical University «Kharkiv polytechnic institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Organic Synthesis and nanotechnology

Tetiana Falalieieva, National Technical University «Kharkiv polytechnic institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Organic Synthesis and nanotechnology

### References

Shestopalov, O., Pitak, I. V. (2014). Analysis of existent processes and devices of bioscrubbing gas emissions. Technology Audit and Production Reserves, 3 (5 (17)), 49–52. doi: https://doi.org/10.15587/2312-8372.2014.25373

Iranpour, R., Cox, H. H. J., Deshusses, M. A., Schroeder, E. D. (2005). Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environmental Progress, 24 (3), 254–267. doi: https://doi.org/10.1002/ep.10077

Rojo, N., Muñoz, R., Gallastegui, G., Barona, A., Gurtubay, L., Prenafeta-Boldú, F. X., Elías, A. (2012). Carbon disulfide biofiltration: Influence of the accumulation of biodegradation products on biomass development. Journal of Chemical Technology & Biotechnology, 87 (6), 764–771. doi: https://doi.org/10.1002/jctb.3743

Rizzolo, J. A., Woiciechowski, A. L., dos Santos, V. C. C., Soares, M., Páca, J., Soccol, C. R. (2012). Biofiltration of increasing concentration gasoline vapors with different ethanol proportions. Journal of Chemical Technology & Biotechnology, 87 (6), 791–796. doi: https://doi.org/10.1002/jctb.3780

Liu, D., Feilberg, A., Hansen, M. J., Pedersen, C. L., Nielsen, A. M. (2015). Modeling removal of volatile sulfur compounds in a full-scale biological air filter. Journal of Chemical Technology & Biotechnology, 91 (4), 1119–1127. doi: https://doi.org/10.1002/jctb.4696

Zagorskis, A., Vaiškūnaitė, R. (2014). An Investigation on the Efficiency of Air Purification Using a Biofilter with Activated Bed of Different Origin. Chemical and Process Engineering, 35 (4), 435–445. doi: https://doi.org/10.2478/cpe-2014-0033

Álvarez-Hornos, F. J., Volckaert, D., Heynderickx, P. M., Van Langenhove, H. (2012). Removal of ethyl acetate, n-hexane and toluene from waste air in a membrane bioreactor under continuous and intermittent feeding conditions. Journal of Chemical Technology & Biotechnology, 87 (6), 739–745. doi: https://doi.org/10.1002/jctb.3734

Rojo, N., Muñoz, R., Gallastegui, G., Barona, A., Gurtubay, L., Prenafeta-Boldú, F. X., Elías, A. (2012). Carbon disulfide biofiltration: Influence of the accumulation of biodegradation products on biomass development. Journal of Chemical Technology & Biotechnology, 87 (6), 764–771. doi: https://doi.org/10.1002/jctb.3743

Nelson, M., Bohn, H. L. (2011). Soil-Based Biofiltration for Air Purification:Potentials for Environmental and Space LifeSupport Application. Journal of Environmental Protection, 02 (08), 1084–1094. doi: https://doi.org/10.4236/jep.2011.28125

González-Sánchez, A., Arellano-García, L., Bonilla-Blancas, W., Baquerizo, G., Hernández, S., Gabriel, D., Revah, S. (2014). Kinetic Characterization by Respirometry of Volatile Organic Compound-Degrading Biofilms from Gas-Phase Biological Filters. Industrial & Engineering Chemistry Research, 53 (50), 19405–19415. doi: https://doi.org/10.1021/ie503327f

Shareefdeen, Z., Aidan, A., Ahmed, W., Khatri, M. B., Islam, M., Lecheheb, R., Shams, F. (2010). Hydrogen Sulphide Removal Using a Novel Biofilter Media. International Journal of Chemical and Molecular Engineering, 4 (2), 145–148.

Shareefdeen, Z. M., Ahmed, W., Aidan, A. (2011). Kinetics and Modeling of H2S Removal in a Novel Biofilter. Advances in Chemical Engineering and Science, 01 (02), 72–76. doi: https://doi.org/10.4236/aces.2011.12012

Bonilla-Blancas, W., Mora, M., Revah, S., Baeza, J. A., Lafuente, J., Gamisans, X. et. al. (2015). Application of a novel respirometric methodology to characterize mass transfer and activity of H2S-oxidizing biofilms in biotrickling filter beds. Biochemical Engineering Journal, 99, 24–34. doi: https://doi.org/10.1016/j.bej.2015.02.030

Ahmed, W., Shareefdeen, Z. M., Jabbar, N. A. (2013). Dynamic modeling and analysis of biotrickling filters in continuous operation for H2S removal. Clean Technologies and Environmental Policy, 16 (8), 1757–1765. doi: https://doi.org/10.1007/s10098-013-0697-0

Bakharevа, A., Shestopalov, O., Filenko, O., Tykhomyrova, Т. (2015). (2015). Development of a mathematical model of the process of biological treatment of gaseous emissions. Eastern-European Journal of Enterprise Technologies, 6 (6 (78)), 53–61. doi: https://doi.org/10.15587/1729-4061.2015.56220

Bakharevа, A., Shestopalov, O., Filenko, O., Novozhylova, T., Kobilyansky, B. (2017). Development of the mathematical model of the biotreatment process of water-soluble gaseous emissions. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 56–62. doi: https://doi.org/10.15587/1729-4061.2017.98675

Bakharevа, A., Shestopalov, O., Filenko, O., Tykhomyrova, Т. (2016). Development of a mathematical model of the process of biological treatment of gasous effluents from formaldehyde. Eastern-European Journal of Enterprise Technologies, 1(10(79)), 4–10. doi: https://doi.org/10.15587/1729-4061.2016.59508

Bakharevа, A., Shestopalov, O., Filenko, O., Kobilyansky, B. (2016). Development of universal model of kinetics of bioremediation stationary process with substrate inhibition. Eastern-European Journal of Enterprise Technologies, 2 (10 (80)), 19–26. doi: https://doi.org/10.15587/1729-4061.2016.65036

Kornish-Bouden, E. (1979). Osnovy fermentativnoy kinetiki. Moscow: Mir, 280.

Keleti, T. (1990). Osnovy fermentativnoy kinetiki. Moscow: Nauka, 350.

Romanovskiy, Y. M., Stepanova, N. V., Chernavskiy, D. S. (2003). Matematicheskoe modelirovanie v biofizike. Moscow-Izchevsk: Institut kompiutornih issledovaniy, 402.

Berezin, I. V., Martinek, K. (1978). Osnovi fizicheskoy himii fermentativnogo kataliza. Moscow: Vishaya shkola, 280.

Kubasov, A. A. (2004). Himicheskaya kinetika i kataliz. Chast 1. Statisticheski ravnovesnaya fenomenologicheskaya kinetika. Moscow: Izd-vo Moskovskogo universiteta, 144.

Levanov, A. V., Antipenko, E. Ye. (2006). Vvedenie v himicheskuyu kinetiku. Moscow: MGU im. Lomonosova, 51.

Bakharevа, A., Shestopalov, O., Semenov, Ye. O., Bukatenko, N. O. (2015). Macrokinetic mathematical model development of biological treatment process of gasiform emissions. ScienceRise, 2 (2 (7)), 12–15. doi: https://doi.org/10.15587/2313-8416.2015.37057

Bakharevа, A., Shestopalov, O., Filenko, O., Kobilyansky, B. (2016). Development of universal model of kinetics of bioremediation stationary process with substrate inhibition. Eastern-European Journal of Enterprise Technologies, 2 (10 (80)), 19–26. doi: https://doi.org/10.15587/1729-4061.2016.65036

👁 334
⬇ 243
Published
2018-11-28
How to Cite
Bakharieva, G., Petrov, S., & Falalieieva, T. (2018). Development of the mathematical model of the kinetics of the stationary process of bio-cleaning with substratic inhibition. Technology Transfer: Fundamental Principles and Innovative Technical Solutions, 26-29. https://doi.org/10.21303/2585-6847.2018.00753
Section
Ecology Science