GROUPING METHOD OF IMAGE FRAGMENTS OF ADJACENT DISLOCATION ETCH PITS OF THE SEMICONDUCTOR WAFER

  • Andrey Samoilov Kremenchuk Mykhailo Ostrohradskyi National University
  • Igor Shevchenko Kremenchuk Mykhailo Ostrohradskyi National University
Keywords: etch pits, dislocation, loop fragments, gallium arsenide, digital image

Abstract

An increase in production volumes of gallium arsenide semiconductor devices determines the need for better control of dislocations of semiconductor wafer.

The grouping method of image fragments of adjacent dislocation etch pits of the semiconductor wafer is proposed in the article. Adjacent fragments will be allocated in the pre-binarized image of wafer surface, which contains adjacent fragments of etch pits of dislocation loops after treatment by the described method. Improved methods for determining the loop line width determines the edge line width of etch pits of suspected dislocations, given the variability of their display in the binarized image. The current loop line width is compared to the reference line width of the dislocation loop.

The grouping method of image fragments of adjacent dislocation etch pits of the semiconductor wafer defines recovery of loop lines branching, takes into account various options of line adjacency and determines the direction of further recovery of loop line of dislocation etch pits. A step by step description of the method is given.

Downloads

Download data is not yet available.

Author Biographies

Andrey Samoilov, Kremenchuk Mykhailo Ostrohradskyi National University

Department of Information and Control Systems

Igor Shevchenko, Kremenchuk Mykhailo Ostrohradskyi National University

Department of Information and Control Systems

References

Samoilov, A. N., Shevchenko, I. V. (2013). Metod obnaruzhenija linij konturov v jarkostnyh perepadah predpolagaemyh granej binarizovannogo izobrazhenija sledov dislokacij na plastinah GaAs. Avtomatizirovannye sistemy upravlenija i pribory avtomatiki, 165, 22–27.

Jain, A. K., Murty, M. N., Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys, 31, 3. doi:10.1145/331499.331504

Zadeh, L. A. (1999). From Сomputing with Numbers to Computing with Words – From Manipulation of Measurements to Manipulation of Perceptions. IEEE Transactions on Circuits and Systems, 45, 105–119.

A Comprehensive Overview of Basic Clustering Algorithms (Glenn Fung), June 22, 2001.

Du, K.-L. (2010). Clustering: a neural network approach. Neural Networks, 23, 89–107. doi:10.1016/j.neunet.2009.08.007

Sheikholeslami, G., Chatterjee, S., Zhang, A. (1998). “WaveCluster: A multi-resolution clustering approach for very large spatial databases,” in Proc. 24th VLDB Conf., 428–439.

Han, J., Kamber, M., Tung, A. K. H. (2001). Spatial clustering methods in data mining: A survey. In Miller, H. and Han, J. (Eds.) Geographic Data Mining and Knowledge Discovery, 188–217. doi:10.4324/9780203468029_chapter_8

Ester, M., Kriegel, H. P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial database with noise. Knowledge Discovery in Databases and Data Mining: Proc. Int. Conf. (E. Simoudis, J. Han, and U. Fayyad, eds.), Portland, Oregon, 2-4 August, 1996, N. Y.: AAAI Press, 226–331.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., Sander J. (1999). OPTICS: ordering points to identify the clustering structure. Proc. 1999 ACM SIGMOD Intern. Conf. on Management of data, 49–60.

Hinneburg, A., Keim, D. A. (1998). An efficient approach to clustering in large multimedia databases with noise. Proc 4th Intern. Conf. on Knowledge Discovery and Data Mining. N.Y., Aug, 58–65.

Hinneburg, A., Gabriel H.-H. (2007). DENCLUE 2.0: Fast clustering based on kernel density estimation. In Proc. 2007 Int. Conf. Intelligent Data Analysis (IDA'07), Ljubljana, Slovenia, 70–80. doi:10.1007/978-3-540-74825-0_7

Samoilov, A., Shevchenko, I. (2016). Development of methods for separa-tion of binarized fragments of etching pits of semiconductor wafer. Technology Audit And Production Reserves, 3(1(29)), 60–68. doi:10.15587/2312-8372.2016.71988

Samoilov, A. N. (2013). Analiz adaptivnoj porogovoj obrabotki yar-kostnyx perepadov elementov cifrovogo rastrovogo izobrazheniya. Materіaly IX Mіzhnarodnoї naukovo-praktichnoї konferencії «Rozvitok naukovix doslіdzhen 2013», 26–28.

Samoilov, A. N. (2015). Metody vosstanovleniya linii kontura dislokacii cifrovogo izobrazheniya plastiny arsenida galliya. Eastern-European Journal of Eenterprise Technologies, 3/5 (75), 8–16. doi:10.15587/1729-4061.2015.43326


👁 488
⬇ 245
Published
2016-08-06
How to Cite
Samoilov, A., & Shevchenko, I. (2016). GROUPING METHOD OF IMAGE FRAGMENTS OF ADJACENT DISLOCATION ETCH PITS OF THE SEMICONDUCTOR WAFER. EUREKA: Physics and Engineering, (4), 47-54. https://doi.org/10.21303/2461-4262.2016.000128
Section
Mechanical Engineering