GROUPING METHOD OF IMAGE FRAGMENTS OF ADJACENT DISLOCATION ETCH PITS OF THE SEMICONDUCTOR WAFER
Abstract
An increase in production volumes of gallium arsenide semiconductor devices determines the need for better control of dislocations of semiconductor wafer.
The grouping method of image fragments of adjacent dislocation etch pits of the semiconductor wafer is proposed in the article. Adjacent fragments will be allocated in the pre-binarized image of wafer surface, which contains adjacent fragments of etch pits of dislocation loops after treatment by the described method. Improved methods for determining the loop line width determines the edge line width of etch pits of suspected dislocations, given the variability of their display in the binarized image. The current loop line width is compared to the reference line width of the dislocation loop.
The grouping method of image fragments of adjacent dislocation etch pits of the semiconductor wafer defines recovery of loop lines branching, takes into account various options of line adjacency and determines the direction of further recovery of loop line of dislocation etch pits. A step by step description of the method is given.
Downloads
References
Samoilov, A. N., Shevchenko, I. V. (2013). Metod obnaruzhenija linij konturov v jarkostnyh perepadah predpolagaemyh granej binarizovannogo izobrazhenija sledov dislokacij na plastinah GaAs. Avtomatizirovannye sistemy upravlenija i pribory avtomatiki, 165, 22–27.
Jain, A. K., Murty, M. N., Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys, 31, 3. doi:10.1145/331499.331504
Zadeh, L. A. (1999). From Сomputing with Numbers to Computing with Words – From Manipulation of Measurements to Manipulation of Perceptions. IEEE Transactions on Circuits and Systems, 45, 105–119.
A Comprehensive Overview of Basic Clustering Algorithms (Glenn Fung), June 22, 2001.
Du, K.-L. (2010). Clustering: a neural network approach. Neural Networks, 23, 89–107. doi:10.1016/j.neunet.2009.08.007
Sheikholeslami, G., Chatterjee, S., Zhang, A. (1998). “WaveCluster: A multi-resolution clustering approach for very large spatial databases,” in Proc. 24th VLDB Conf., 428–439.
Han, J., Kamber, M., Tung, A. K. H. (2001). Spatial clustering methods in data mining: A survey. In Miller, H. and Han, J. (Eds.) Geographic Data Mining and Knowledge Discovery, 188–217. doi:10.4324/9780203468029_chapter_8
Ester, M., Kriegel, H. P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial database with noise. Knowledge Discovery in Databases and Data Mining: Proc. Int. Conf. (E. Simoudis, J. Han, and U. Fayyad, eds.), Portland, Oregon, 2-4 August, 1996, N. Y.: AAAI Press, 226–331.
Ankerst, M., Breunig, M. M., Kriegel, H.-P., Sander J. (1999). OPTICS: ordering points to identify the clustering structure. Proc. 1999 ACM SIGMOD Intern. Conf. on Management of data, 49–60.
Hinneburg, A., Keim, D. A. (1998). An efficient approach to clustering in large multimedia databases with noise. Proc 4th Intern. Conf. on Knowledge Discovery and Data Mining. N.Y., Aug, 58–65.
Hinneburg, A., Gabriel H.-H. (2007). DENCLUE 2.0: Fast clustering based on kernel density estimation. In Proc. 2007 Int. Conf. Intelligent Data Analysis (IDA'07), Ljubljana, Slovenia, 70–80. doi:10.1007/978-3-540-74825-0_7
Samoilov, A., Shevchenko, I. (2016). Development of methods for separa-tion of binarized fragments of etching pits of semiconductor wafer. Technology Audit And Production Reserves, 3(1(29)), 60–68. doi:10.15587/2312-8372.2016.71988
Samoilov, A. N. (2013). Analiz adaptivnoj porogovoj obrabotki yar-kostnyx perepadov elementov cifrovogo rastrovogo izobrazheniya. Materіaly IX Mіzhnarodnoї naukovo-praktichnoї konferencії «Rozvitok naukovix doslіdzhen 2013», 26–28.
Samoilov, A. N. (2015). Metody vosstanovleniya linii kontura dislokacii cifrovogo izobrazheniya plastiny arsenida galliya. Eastern-European Journal of Eenterprise Technologies, 3/5 (75), 8–16. doi:10.15587/1729-4061.2015.43326
Copyright (c) 2016 Andrey Samoilov, Igor Shevchenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.