VECTOR INDICATOR AS A TOOL OF RECURRENT ARTIFICIAL NEURON NET FOR PROCESSING DATA
Abstract
The three-level comparator is applied as a tool to formation of vector-indicator of function and its argument and recurrent artificial neuron net (RANN). The modernization of expression in Fourier series due to usage of the vector-indicator components is introduced. The example of RANN for peripheral processing data on the basis of a long-short-term memory is proposed. The dependence of number point shift from order of oldest derivatives in expression is studied. The system equations realizing conditions of minimization a sum of squared deviations from the patterns are written. The processes of transformation on different stage of data acquisition and processing into RANN are considered. Decomposition of function on derivatives and vector-indicator inside RANN is shown. The numerical experiments for analytical learning are done, they demonstrated convergence of analytical learning algorithms independently from first approximation even for oscillating operators.
Downloads
References
Bodyanskiy, Ye., Chaplanov, O., Popov, S. (2003). Adaptive prediction of quasiharmonic sequences using feedforward network. Proc. Int. Conf. Artificial Neural Networks and Neural Information Processing, Istanbul, ICANN / ICONIP, 378–381.
Kryuchkovskiy, V. V., Petrov, K. E. (2011). Development of methodology for identification models of intellectual activity. Problem of information technology, 9, 26–33.
Kryuchkovskiy, V. V., Petrov, E. G. Brynza, N. A. (2010). Informativnaya predpochtitelnost statisticheskoy formy predstavleniya iskhodnykh dannykh v usloviyakh intervalnoy neopredelennosti. St. Petersburg state polytechnical university journal “Computer science. Telecommunications and control systems”, №4 (103), 11–18.
Кhodakov, V. E., Vezumskiy, A. K. (2013). Kharakternye osobennosti odnogo klassa sotsial'no-ekonomicheskikh sistem. Problemi Іnformatsіynikh, №2(014), 10–14
Сollatz, L. (1964). Funktionalanalisis und Numerische Mathematik. Springer-Verlag Berlin-Gottigen-Heidelberg, 447.doi: 10.1007/978-3-642-95028-5
Kondratenko, Y. P., Sidenko, Ie. V. (2012). Correction of the Knowledge Database of Fuzzy Decision Support System with Variable Structure of the Input Data. Modeling and Simulation. Anna M. Gil-Lafuente, V.Krasnoproshin (Eds.). Proc. of the Int. Conference MS'12, (2-4 May 2012, Minsk, Belarus). ¬– Minsk: Publ. Center of BSU, 56–61.
Kondratenko, Y. P., Korobko, V. V. Korobko, O. V. (2013). Distributed computer system for monitoring and control of thermoacoustic processes. In: Intelligent Data Acquisition and Advanced Computing Systems IEEE 7th Int. Conf. on. IEEE, 249–253.doi: 10.1109/idaacs.2013.6662682
Kondratenko, Y., Klymenko, L., Kondratenko, V., Kondratenko, G., Shvets E. (2013). Slip Displacement Sensors for Intelligent Robots: Solutions and Models. In: Intelligent Data Acquisition and Advanced Computing Systems IEEE 7th Int.onf. on. IEEE, 861–866.doi: 10.1109/idaacs.2013.6663050
Fiesler, E., Duong, T., Trunov, A. (2000). Design of neural network-based microship for color segmentation. IEEE Transaction Intelligent Optical Systems, Pr. Of SPIE 4055, 228–238.
Trunov, A. N. (2011). “Recurrence approximation in problems of modeling and design”:Monografy – Mykolayiv: Petro Mohyla BSSU, 272.
Trunov, A. N. (2013). Intellectualization of the models’ transformation process to the recurrent sequence. European Applied Sciences, Ort Publishing, 9, 1, 123–130.
Trunov, A. N. (2014). Application of the recurrent approximation method to synthesis of neuron net for determination the hydrodynamic characteristics of underwater vehicles. Problem of Information Technology, Jornal, 02(016), 39–47.
Copyright (c) 2016 Alexander Trunov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.