IMPROVEMENT OF OPERATION MODES OF THE EVAPORATOR OF THE ABSORPTION REFRIGERATING UNIT
Abstract
Absorption refrigeration units (ARU), which are part of absorption refrigeration devices (ARD) with a natural working fluid (water, ammonia and hydrogen) have a number of unique qualities. These qualities include: noiselessness, high reliability and long life; the possibility of using several energy sources in one device. At the same time, ARDs have increased energy consumption compared to similar compression models, and this does not allow them to expand their presence in the market of household refrigeration equipment.
The ARU evaporator provides a predetermined temperature level in the chambers of the refrigeration appliance and the required cooling capacity. In this regard, it is relevant to search for the operating modes of the evaporator that provide the ARU maximum energy efficiency, which is the aim of this work.
The thermal conditions of the direct-flow three-pipe design of the evaporator are simulated. The calculated ratio for a once-through evaporator is obtained taking into account the assumption of the adiabaticity of the evaporation process, when all the heat of the phase transition is used to cool the incoming flows of the purified vapor-gas mixture (VGM) and liquid ammonia to a minimum temperature.
The analysis of the results of calculating the operating modes of the evaporator made it possible to determine the directions of ways to increase the energy efficiency of both the evaporator itself and the ARU in general:
a) preliminary cooling of the purified VGM flow at the inlet of the adiabatic section of the evaporator with an under-recovery of up to 5 °C and up to 10 °C;
b) preliminary cooling of the liquid ammonia flow at the inlet of the adiabatic section of the evaporator with an under-recovery of up to 5 °C for all ARU types;
c) increasing the purification degree of the VGM flow in the absorber allows increasing the temperature of the purified VGM flow at the inlet of the adiabatic section of the evaporator by 4...6 °C, i. e. to reduce the costs of useful cooling capacity for pre-cooling by 10...15 %
Downloads
References
Ashton, M. (2013). UNIDO Releases Guide on Transitioning to Natural Refrigerants. Available at: http://sdg.iisd.org/news/unido-releases-guide-on-transitioning-to-natural-refrigerants/
DSTU 3023-95 (GOST 30204-95, ISO 5155-83, ISO 7371-85, ISO 8187-91). Priladi holodil'nі pobutovі. Ekspluatatsіynі harakteristiki ta metodi viprobuvan' (1996). Kyiv, 22.
Dincer, I., Ratlamwala, T. A. H. (2016). Developments in Absorption Refrigeration Systems. Integrated Absorption Refrigeration Systems, 241–257. doi: https://doi.org/10.1007/978-3-319-33658-9_8
Srikhirin, P., Aphornratana, S., Chungpaibulpatana, S. (2001). A review of absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 5 (4), 343–372. doi: https://doi.org/10.1016/s1364-0321(01)00003-x
Schmid, F., Bierling, B., Spindler, K. (2019). Development of a solar-driven diffusion absorption chiller. Solar Energy, 177, 483–493. doi: https://doi.org/10.1016/j.solener.2018.11.040
Smirnov, H. F., Kosoy, B. V. (2001). Refrigerating heat pipes. Applied Thermal Engineering, 21 (6), 631–641. doi: https://doi.org/10.1016/s1359-4311(00)00085-5
Jelinek, M., Levy, A., Borde, I. (2016). The influence of the evaporator inlet conditions on the performance of a diffusion absorption refrigeration cycle. Applied Thermal Engineering, 99, 979–987. doi: https://doi.org/10.1016/j.applthermaleng.2016.01.152
Jakob, U., Eicker, U., Schneider, D., Taki, A. H., Cook, M. J. (2008). Simulation and experimental investigation into diffusion absorption cooling machines for air-conditioning applications. Applied Thermal Engineering, 28 (10), 1138–1150. doi: https://doi.org/10.1016/j.applthermaleng.2007.08.007
Taieb, A., Mejbri, K., Bellagi, A. (2016). Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle. Energy, 115, 418–434. doi: https://doi.org/10.1016/j.energy.2016.09.002
Yıldız, A., Ersöz, M. A. (2013). Energy and exergy analyses of the diffusion absorption refrigeration system. Energy, 60, 407–415. doi: https://doi.org/10.1016/j.energy.2013.07.062
Rid, R., Prausnits, Dzh., Shervud, T. (1982). Svoystva gazov i zhidkostey. Leningrad: Himiya, 592.
Smirnov, G. F., Bukraba, M. A., Fattuh, T., Nabulsi, B. (1996). Domestic refrigerators with absorption-diffusion units and heat-transfer panels. International Journal of Refrigeration, 19 (8), 517–521. doi: https://doi.org/10.1016/s0140-7007(96)00039-4
Osipov, Yu. V., Tret'yakov, N. P., Nekrasov, N. N. (1971). Teplo- i massobmen pri absorbtsii ammiaka vodoammiachnym rastvorom iz vodorodoammiachnoy smesi. Holodil'naya tehnika, 9, 47–50.
Rodríguez-Muñoz, J. L., Belman-Flores, J. M. (2014). Review of diffusion–absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 30, 145–153. doi: https://doi.org/10.1016/j.rser.2013.09.019
Zohar, A., Jelinek, M., Levy, A., Borde, I. (2009). Performance of diffusion absorption refrigeration cycle with organic working fluids. International Journal of Refrigeration, 32 (6), 1241–1246. doi: https://doi.org/10.1016/j.ijrefrig.2009.01.010
Starace, G., De Pascalis, L. (2012). An advanced analytical model of the Diffusion Absorption Refrigerator cycle. International Journal of Refrigeration, 35 (3), 605–612. doi: https://doi.org/10.1016/j.ijrefrig.2011.11.007
Taieb, A., Mejbri, K., Bellagi, A. (2016). Theoretical analysis of a diffusion-absorption refrigerator. International Journal of Hydrogen Energy, 41 (32), 14293–14301. doi: https://doi.org/10.1016/j.ijhydene.2016.06.180
Ishchenko, I. N., Titlov, A. S. (2011). Modelirovanie rezhimov raboty isparitelya absorbtsionnogo holodil'nogo agregata (AHA). Kharchova nauka i tekhnolohiya, 1 (14), 102–106.
Morozyuk, L. I. (2000). Reshenie psihrometricheskoy zadachi v absorbtsionno-diffuzionnoy holodil'noy mashine metodom analogiy. Holodil'naya tehnika i tehnologiya, 69, 57–62.
Vasyliv, O. B., Titlov, A. S. (1999). Poisk energosberegayushchih rezhimov raboty seriynyh absorbtsionnyh holodil'nyh apparatov. Holodil'naya tehnika i tehnologiya, 60, 28–37.
Dmitriev, V. I., Tret'yakov, N. P. (1970). Koeffitsienty teplo - i massootdachi pri isparenii ammiaka v vodoammiachnuyu smes'. Holodil'naya tehnika, 6, 32–35.
Spravochnik po teploobmennikam (1987). Vol. 1. Moscow: Energoatomizdat, 560.
Mansouri, R., Bourouis, M., Bellagi, A. (2017). Experimental investigations and modelling of a small capacity diffusion-absorption refrigerator in dynamic mode. Applied Thermal Engineering, 113, 653–662. doi: https://doi.org/10.1016/j.applthermaleng.2016.11.078
Mazouz, S., Mansouri, R., Bellagi, A. (2014). Experimental and thermodynamic investigation of an ammonia/water diffusion absorption machine. International Journal of Refrigeration, 45, 83–91. doi: https://doi.org/10.1016/j.ijrefrig.2014.06.002
Titlova, O., Titlov, O., Olshevska, O. (2016). Searching for the energy efficient operation modes of absorption refrigeration devices. Eastern-European Journal of Enterprise Technologies, 5 (2 (83)), 45–53. doi: https://doi.org/10.15587/1729-4061.2016.79353
Bogdanov, S. N., Burtsev, S. I., Ivanov, O. P., Kupriyanova, A. V. (1999). Holodil'naya tehnika. Konditsionirovanie vozduha. Svoystva veshchestv. Sankt-Peterburg: SPbGAHPT, 320.
Agostini, B., Agostini, F., Habert, M. (2016). Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle. Journal of Physics: Conference Series, 745, 032053. doi: https://doi.org/10.1088/1742-6596/745/3/032053
Titlov, O., Hratii, T., Bilenko, N. (2020). Enhancing energy efficiency of absorption refrigeration devices. Refrigeration Engineering and Technology, 55 (5-6), 293–303. doi: https://doi.org/10.15673/ret.v55i5-6.1659
Copyright (c) 2021 Oleksandr Titlov, Daniyorbek Adambayev, Oleg Vasyliv

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.