Modeling of natural convection of a concentrated solar power receiver absorber tube in interaction with neighbouring absorbers

Keywords: Concentrated Solar Power, Receiver Absorber Tubes, Natural convection, Dimensionless Parameters


Concentrated Solar Power (CSP) technology stands out among other renewable energy sources not only because of its ability to address current energy security and environmental challenges but because its energy can be stored for future use. To ensure optimum performance in this system, the heat losses need to be evaluated for better design.

This work studies the natural convection in the receiver absorber tube of a CSP plant taking into consideration the influence of neighboring absorbers. A 2-Dimensional model was adopted in this study. Initially, a single absorber tube was considered, it was subjected to heat flux at the top wall, the bottom wall was insulated and a temperature differential was set up at the lateral walls. The dimensionless forms of Navier-Stokes and energy equations were solved using the finite element formulation of COMSOL Multiphysics software. The result obtained for a single absorber tube showed good agreement with existing research works. This validated model was then extended to multiple absorber tubes (two to six absorber tubes). On the basis of the study, there is an observed increase in the intensity and dominance of convective heat transfer with an increase in the number of absorber tubes. This is occasioned by an increase in the average surface temperature as well as average Nusselt number. For the Rayleigh number of 104, 105 and 106, the average Nusselt number increases with the number of absorber tubes by 13.87 %, 6.26 %, and 1.55 %, respectively. This increment suggests effect of thermal interactions among the neighboring absorber tubes


Download data is not yet available.

Author Biographies

Olanrewaju Miracle Oyewola, Fiji National University; University of Ibadan

School of Mechanical Engineering

Department of Mechanical Engineering

Niyi Ezekiel Olukayode, Ekiti State University

Department of Mechanical Engineering

Olusegun Olufemi Ajide, University of Ibadan

Department of Mechanical Engineering


Taumoefolau, T., Paitoonsurikarn, S., Hughes, G., Lovegrove, K. (2004). Experimental Investigation of Natural Convection Heat Loss From a Model Solar Concentrator Cavity Receiver. Journal of Solar Energy Engineering, 126 (2), 801–807. doi:

Ngo, L. C., Bello-Ochende, T., Meyer, J. P. (2014). Numerical Modelling of Combined Natural Convection and Surface Radiation Heat Transfer in Cavity Receiver with Plate Fins. Proceedings of the 15th International Heat Transfer Conference. doi:

Sojoudi, A., Saha, S. C., Gu, Y. T. (2015). Natural convection due to differential heating of inclined walls and heat source placed on bottom wall of an attic shaped space. Energy and Buildings, 89, 153–162. doi:

Kristian, L., Bernard, F. (2002). Free convection heat losses in a flat plate solar collector. Energy and the Environment, 101–114.

Hinojosa, J. F., Alvarez, G., Estrada, C. A. (2006). Three-dimensional numerical simulation of the natural convection in an open tilted cubic cavity. Revista Mexicana De Fi´Sica, 52 (2), 111–119.

Duggal, R., Jilte, R. (2017). Numerical Investigation on Trapezoidal Cavity Receiver Used In LFR with Water Flow in Absorber Tubes. IOP Conference Series: Materials Science and Engineering, 187, 012026. doi:

Sudhansu, S. S., Vargheseb, S. M., Kumarb, A., Kumarb, S. Singha, S., Banerjeea, R. (2011). An experimental and computational investigation of heat losses from the cavity receiver used in Linear Fresnel Reflector solar thermal system. Proceedings of International Conference on Advances in Energy Research (ICAER).

Yaghoubi, M., Ahmadi, F., Bandehee, M. (2013). Analysis of Heat Losses of Absorber Tubes of Parabolic through Collector of Shiraz (Iran) Solar Power Plant. Journal of Clean Energy Technologies, 1 (1), 33–37. doi:

Mon, M. M., Soe, M. M., Htay, M. M. (2015). 3D modeling of temperature distribution for absorber tube of parabolic trough collector. International Journal of Engineering and Applied Sciences (IJEAS), 2 (6), 99–103.

Nag, A., Sarkar, A., Sastri, V. M. K. (1993). Natural convection in a differentially heated square cavity with a horizontal partition plate on the hot wall. Computer Methods in Applied Mechanics and Engineering, 110 (1-2), 143–156. doi:

Ghafouri, A., Jozaei, A. F., Salari, M. (2015). Numerical evaluation of Nusselt number on the hot wall in square enclosure filled with nanofluid. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9 (2), 360–364.

Fusegi, T., Hyun, J. M., Kuwahara, K., Farouk, B. (1991). A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. International Journal of Heat and Mass Transfer, 34 (6), 1543–1557. doi:

Shi, X., Khodadadi, J. M. (2003). Laminar Natural Convection Heat Transfer in a Differentially Heated Square Cavity Due to a Thin Fin on the Hot Wall. Journal of Heat Transfer, 125 (4), 624–634. doi:

Elatar, A., Teamah, M. A., Hassab, M. A. (2016). Numerical study of laminar natural convection inside square enclosure with single horizontal fin. International Journal of Thermal Sciences, 99, 41–51. doi:

Omar, M. A., Ghalib, Y. K. (2015). Numerical Investigation of Natural Convection Heat Transferfrom Square Cylinder in an Enclosed Enclosure Filled with Nanofluids. International Journal of Recent Advances in Mechanical Engineering, 4 (4), 1–17. doi:

Yao, S.-G., Duan, L.-B., Ma, Z.-S., Jia, X.-W. (2014). The Study of Natural Convection Heat Transfer in a Partially Porous Cavity Based on LBM. The Open Fuels and Energy Science Journal, 7 (1), 88–93. doi:

Moukalled, F., Acharya, S. (2000). Natural convection in trapezoidal cavities with baffles mounted on the upper inclined surfaces. Numerical Heat Transfer, Part A: Applications, 37 (6), 545–565. doi:

👁 243
⬇ 131
How to Cite
Oyewola, O. M., Olukayode, N. E., & Ajide, O. O. (2021). Modeling of natural convection of a concentrated solar power receiver absorber tube in interaction with neighbouring absorbers. EUREKA: Physics and Engineering, (5), 53-61.

Most read articles by the same author(s)