Improvement the performance of composite PCM paraffin-based incorporate with volcanic ash as heat storage for low-temperature application
Abstract
Paraffin is well known thermal energy storage with the high latent heat of fusion. Unfortunately, low thermal conductivity and low melting temperature inhibit large-scale applications for lower temperature applications like solar water heaters and desalination. The addition of high thermal conductivity material can increase the thermal conductivity of paraffin and increase the melting temperature of paraffin. In this study, a new approach is taken by using volcanic sand as thermal conductivity enhancement material. The properties of the sand are examined. The chemical composition of the sand is dominated by Fe (51.23 %), Fe2O3 (23.24 %) and SiO2 (11 %), which are known as good thermal conductivity materials. Six different compositions of paraffin/sand (weight ration) are tested to observe the melting and vapor temperature of the composite. Adding sand (with granule size of 44 µm) by 30 wt % can accelerate the charging rate by 25 % compared to pure paraffin, where the discharging rate is increased significantly by 17.8 %. The supercooling degree of the composite is only 1 °C, where pure paraffin has a supercooling degree by 8 °C. The charging and discharging characteristics for each sample are discussed in detail within the article. Overall, the addition of volcanic sand improves paraffin's charging and discharging rate, reducing the supercooling degree and can be considered a convenient method to improve the paraffin performance as latent heat storage
Downloads
References
Kanimozhi, B., Harish, K., Tarun, B. S., Sainath Reddy, P. S., Sujeeth, P. S. (2017). Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials. IOP Conference Series: Materials Science and Engineering, 197, 012040. doi: https://doi.org/10.1088/1757-899x/197/1/012040
Ismail, I., Rahman, R. A., Haryanto, G., Pane, E. A. (2021). The Optimal Pitch Distance for Maximizing the Power Ratio for Savonius Turbine on Inline Configuration. International Journal of Renewable Energy Research, 11 (2), 595–599.
Praveen, B., Suresh, S. (2018). Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Engineering Science and Technology, an International Journal, 21 (5), 1086–1094. doi: https://doi.org/10.1016/j.jestch.2018.07.010
Klarzak, I., Ura-Bińczyk, E., Płocińska, M., Jurczyk-Kowalska, M. (2018). Effect of temperature and humidity on heat effect of commercial chemical warmers based on iron powder. Thermal Science and Engineering Progress, 6, 87–94. doi: https://doi.org/10.1016/j.tsep.2018.03.006
Liu, Y., Yu, K., Lu, S., Wang, C., Li, X., Yang, Y. (2020). Experimental research on an environment-friendly form-stable phase change material incorporating modified rice husk ash for thermal energy storage. Journal of Energy Storage, 31, 101599. doi: https://doi.org/10.1016/j.est.2020.101599
Rahmalina, D., Rahman, R. A., Suwandi, A., Ismail (2020). The recent development on MgH2 system by 16 wt% nickel addition and particle size reduction through ball milling: A noticeable hydrogen capacity up to 5 wt% at low temperature and pressure. International Journal of Hydrogen Energy, 45 (53), 29046–29058. doi: https://doi.org/10.1016/j.ijhydene.2020.07.209
Hailu, G., Hayes, P., Masteller, M. (2017). Seasonal Solar Thermal Energy Sand-Bed Storage in a Region with Extended Freezing Periods: Part I Experimental Investigation. Energies, 10 (11), 1873. doi: https://doi.org/10.3390/en10111873
Mhiri, H., Jemni, A., Sammouda, H. (2020). Numerical and experimental investigations of melting process of composite material (nanoPCM/carbon foam) used for thermal energy storage. Journal of Energy Storage, 29, 101167. doi: https://doi.org/10.1016/j.est.2019.101167
George, M., Pandey, A. K., Rahim, N. A., Tyagi, V. V., Shahabuddin, S., Saidur, R. (2020). Long-term thermophysical behavior of paraffin wax and paraffin wax/polyaniline (PANI) composite phase change materials. Journal of Energy Storage, 31, 101568. doi: https://doi.org/10.1016/j.est.2020.101568
Reyes, A., Henríquez-Vargas, L., Rivera, J., Sepúlveda, F. (2017). Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material. Renewable Energy, 101, 225–235. doi: https://doi.org/10.1016/j.renene.2016.08.057
Ahmed, N., Elfeky, K. E., Lu, L., Wang, Q. W. (2020). Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications. Renewable Energy, 152, 684–697. doi: https://doi.org/10.1016/j.renene.2020.01.073
Sivapalan, B., Neelesh Chandran, M., Manikandan, S., Saranprabhu, M. K., Pavithra, S., Rajan, K. S. (2018). Paraffin wax–water nanoemulsion: A superior thermal energy storage medium providing higher rate of thermal energy storage per unit heat exchanger volume than water and paraffin wax. Energy Conversion and Management, 162, 109–117. doi: https://doi.org/10.1016/j.enconman.2018.01.073
Elbahjaoui, R., El Qarnia, H. (2019). Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material. International Journal of Hydrogen Energy, 44 (3), 2013–2028. doi: https://doi.org/10.1016/j.ijhydene.2018.11.116
Zhang, P., Meng, Z. N., Zhu, H., Wang, Y. L., Peng, S. P. (2017). Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Applied Energy, 185, 1971–1983. doi: https://doi.org/10.1016/j.apenergy.2015.10.075
Frazzica, A., Manzan, M., Sapienza, A., Freni, A., Toniato, G., Restuccia, G. (2016). Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications. Applied Energy, 183, 1157–1167. doi: https://doi.org/10.1016/j.apenergy.2016.09.076
Palacios, A., Elena Navarro, M., Barreneche, C., Ding, Y. (2020). Hybrid 3 in 1 thermal energy storage system – Outlook for a novel storage strategy. Applied Energy, 274, 115024. doi: https://doi.org/10.1016/j.apenergy.2020.115024
Drissi, S., Ling, T.-C., Mo, K. H. (2019). Thermal efficiency and durability performances of paraffinic phase change materials with enhanced thermal conductivity – A review. Thermochimica Acta, 673, 198–210. doi: https://doi.org/10.1016/j.tca.2019.01.020
Diago, M., Iniesta, A. C., Soum-Glaude, A., Calvet, N. (2018). Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology. Applied Energy, 216, 402–413. doi: https://doi.org/10.1016/j.apenergy.2018.02.106
Ismail, I., John, J., Pane, E. A., Maulana, R., Rahman, R. A., Suwandi, A. (2021). Experimental Evaluation for The Feasibility of Test Chamber in The Open-Loop Wind Tunnel. WSEAS TRANSACTIONS ON FLUID MECHANICS, 16, 120–126. doi: https://doi.org/10.37394/232013.2021.16.12
Tiskatine, R., Oaddi, R., Ait El Cadi, R., Bazgaou, A., Bouirden, L., Aharoune, A., Ihlal, A. (2017). Suitability and characteristics of rocks for sensible heat storage in CSP plants. Solar Energy Materials and Solar Cells, 169, 245–257. doi: https://doi.org/10.1016/j.solmat.2017.05.033
Welsford, C., Bayomy, A. M., Saghir, M. Z. (2018). Role of metallic foam in heat storage in the presence of nanofluid and microencapsulated phase change material. Thermal Science and Engineering Progress, 7, 61–69. doi: https://doi.org/10.1016/j.tsep.2018.05.003
Bai, Z., Miao, Y., Xu, H., Gao, Q. (2020). Experimental study on thermal storage and heat transfer performance of microencapsulated phase-change material slurry. Thermal Science and Engineering Progress, 17, 100362. doi: https://doi.org/10.1016/j.tsep.2019.100362
Khan, A. I., Valan Arasu, A. (2019). A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Thermal Science and Engineering Progress, 11, 334–364. doi: https://doi.org/10.1016/j.tsep.2019.04.010
Mahdi, M. S., Mahood, H. B., Hasan, A. F., Khadom, A. A., Campbell, A. N. (2019). Numerical study on the effect of the location of the phase change material in a concentric double pipe latent heat thermal energy storage unit. Thermal Science and Engineering Progress, 11, 40–49. doi: https://doi.org/10.1016/j.tsep.2019.03.007
Zhang, P., Hu, Y., Song, L., Lu, H., Wang, J., Liu, Q. (2009). Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material. Thermochimica Acta, 487 (1-2), 74–79. doi: https://doi.org/10.1016/j.tca.2009.01.006
Janu, V. C., Bahuguna, G., Laishram, D., Shejale, K. P., Kumar, N., Sharma, R. K., Gupta, R. (2018). Surface fluorination of α-Fe2O3 using selectfluor for enhancement in photoelectrochemical properties. Solar Energy Materials and Solar Cells, 174, 240–247. doi: https://doi.org/10.1016/j.solmat.2017.09.006
Hezaveh, H., Fazlali, A., Noshadi, I. (2012). Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids. Journal of the Taiwan Institute of Chemical Engineers, 43 (1), 159–164. doi: https://doi.org/10.1016/j.jtice.2011.07.003
Hu, M., Yan, Z., Peng, L., Guo, N., Liu, Z. (2019). Optimization of preparation and analysis of Paraffin/SiO2 composite PCMs via sol-gel method. IOP Conference Series: Earth and Environmental Science, 242, 032005. doi: https://doi.org/10.1088/1755-1315/242/3/032005
Şahan, N., Paksoy, H. (2017). Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials. Solar Energy Materials and Solar Cells, 159, 1–7. doi: https://doi.org/10.1016/j.solmat.2016.08.030
Kılıçkap, S., El, E., Yıldız, C. (2018). Investigation of the effect on the efficiency of phase change material placed in solar collector tank. Thermal Science and Engineering Progress, 5, 25–31. doi: https://doi.org/10.1016/j.tsep.2017.10.016
Venkateshwar, K., Tasnim, S. H., Simha, H., Mahmud, S. (2020). Effect of spatially varying morphologies of metal foams on phase change process. Thermal Science and Engineering Progress, 19, 100667. doi: https://doi.org/10.1016/j.tsep.2020.100667
Copyright (c) 2021 Dwi Rahmalina, Dwi Chandra Adhitya, Reza Abdu Rahman, Ismail Ismail

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.