Improvement the performance of composite PCM paraffin-based incorporate with volcanic ash as heat storage for low-temperature application

Keywords: Composite phase change material, partial phase change, paraffin, thermal energy storage, volcanic ash


Paraffin is well known thermal energy storage with the high latent heat of fusion. Unfortunately, low thermal conductivity and low melting temperature inhibit large-scale applications for lower temperature applications like solar water heaters and desalination. The addition of high thermal conductivity material can increase the thermal conductivity of paraffin and increase the melting temperature of paraffin. In this study, a new approach is taken by using volcanic sand as thermal conductivity enhancement material. The properties of the sand are examined. The chemical composition of the sand is dominated by Fe (51.23 %), Fe2O3 (23.24 %) and SiO2 (11 %), which are known as good thermal conductivity materials. Six different compositions of paraffin/sand (weight ration) are tested to observe the melting and vapor temperature of the composite. Adding sand (with granule size of 44 µm) by 30 wt % can accelerate the charging rate by 25 % compared to pure paraffin, where the discharging rate is increased significantly by 17.8 %. The supercooling degree of the composite is only 1 °C, where pure paraffin has a supercooling degree by 8 °C. The charging and discharging characteristics for each sample are discussed in detail within the article. Overall, the addition of volcanic sand improves paraffin's charging and discharging rate, reducing the supercooling degree and can be considered a convenient method to improve the paraffin performance as latent heat storage


Download data is not yet available.

Author Biographies

Dwi Rahmalina, Universitas Pancasila

Department of Mechanical Engineering

Dwi Chandra Adhitya, Universitas Pancasila

Department of Master in Mechanical Engineering

Reza Abdu Rahman, Universitas Pancasila

Department of Mechanical Engineering

Ismail Ismail, Universitas Pancasila

Department of Mechanical Engineering


Kanimozhi, B., Harish, K., Tarun, B. S., Sainath Reddy, P. S., Sujeeth, P. S. (2017). Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials. IOP Conference Series: Materials Science and Engineering, 197, 012040. doi:

Ismail, I., Rahman, R. A., Haryanto, G., Pane, E. A. (2021). The Optimal Pitch Distance for Maximizing the Power Ratio for Savonius Turbine on Inline Configuration. International Journal of Renewable Energy Research, 11 (2), 595–599.

Praveen, B., Suresh, S. (2018). Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Engineering Science and Technology, an International Journal, 21 (5), 1086–1094. doi:

Klarzak, I., Ura-Bińczyk, E., Płocińska, M., Jurczyk-Kowalska, M. (2018). Effect of temperature and humidity on heat effect of commercial chemical warmers based on iron powder. Thermal Science and Engineering Progress, 6, 87–94. doi:

Liu, Y., Yu, K., Lu, S., Wang, C., Li, X., Yang, Y. (2020). Experimental research on an environment-friendly form-stable phase change material incorporating modified rice husk ash for thermal energy storage. Journal of Energy Storage, 31, 101599. doi:

Rahmalina, D., Rahman, R. A., Suwandi, A., Ismail (2020). The recent development on MgH2 system by 16 wt% nickel addition and particle size reduction through ball milling: A noticeable hydrogen capacity up to 5 wt% at low temperature and pressure. International Journal of Hydrogen Energy, 45 (53), 29046–29058. doi:

Hailu, G., Hayes, P., Masteller, M. (2017). Seasonal Solar Thermal Energy Sand-Bed Storage in a Region with Extended Freezing Periods: Part I Experimental Investigation. Energies, 10 (11), 1873. doi:

Mhiri, H., Jemni, A., Sammouda, H. (2020). Numerical and experimental investigations of melting process of composite material (nanoPCM/carbon foam) used for thermal energy storage. Journal of Energy Storage, 29, 101167. doi:

George, M., Pandey, A. K., Rahim, N. A., Tyagi, V. V., Shahabuddin, S., Saidur, R. (2020). Long-term thermophysical behavior of paraffin wax and paraffin wax/polyaniline (PANI) composite phase change materials. Journal of Energy Storage, 31, 101568. doi:

Reyes, A., Henríquez-Vargas, L., Rivera, J., Sepúlveda, F. (2017). Theoretical and experimental study of aluminum foils and paraffin wax mixtures as thermal energy storage material. Renewable Energy, 101, 225–235. doi:

Ahmed, N., Elfeky, K. E., Lu, L., Wang, Q. W. (2020). Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications. Renewable Energy, 152, 684–697. doi:

Sivapalan, B., Neelesh Chandran, M., Manikandan, S., Saranprabhu, M. K., Pavithra, S., Rajan, K. S. (2018). Paraffin wax–water nanoemulsion: A superior thermal energy storage medium providing higher rate of thermal energy storage per unit heat exchanger volume than water and paraffin wax. Energy Conversion and Management, 162, 109–117. doi:

Elbahjaoui, R., El Qarnia, H. (2019). Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material. International Journal of Hydrogen Energy, 44 (3), 2013–2028. doi:

Zhang, P., Meng, Z. N., Zhu, H., Wang, Y. L., Peng, S. P. (2017). Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Applied Energy, 185, 1971–1983. doi:

Frazzica, A., Manzan, M., Sapienza, A., Freni, A., Toniato, G., Restuccia, G. (2016). Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications. Applied Energy, 183, 1157–1167. doi:

Palacios, A., Elena Navarro, M., Barreneche, C., Ding, Y. (2020). Hybrid 3 in 1 thermal energy storage system – Outlook for a novel storage strategy. Applied Energy, 274, 115024. doi:

Drissi, S., Ling, T.-C., Mo, K. H. (2019). Thermal efficiency and durability performances of paraffinic phase change materials with enhanced thermal conductivity – A review. Thermochimica Acta, 673, 198–210. doi:

Diago, M., Iniesta, A. C., Soum-Glaude, A., Calvet, N. (2018). Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology. Applied Energy, 216, 402–413. doi:

Ismail, I., John, J., Pane, E. A., Maulana, R., Rahman, R. A., Suwandi, A. (2021). Experimental Evaluation for The Feasibility of Test Chamber in The Open-Loop Wind Tunnel. WSEAS TRANSACTIONS ON FLUID MECHANICS, 16, 120–126. doi:

Tiskatine, R., Oaddi, R., Ait El Cadi, R., Bazgaou, A., Bouirden, L., Aharoune, A., Ihlal, A. (2017). Suitability and characteristics of rocks for sensible heat storage in CSP plants. Solar Energy Materials and Solar Cells, 169, 245–257. doi:

Welsford, C., Bayomy, A. M., Saghir, M. Z. (2018). Role of metallic foam in heat storage in the presence of nanofluid and microencapsulated phase change material. Thermal Science and Engineering Progress, 7, 61–69. doi:

Bai, Z., Miao, Y., Xu, H., Gao, Q. (2020). Experimental study on thermal storage and heat transfer performance of microencapsulated phase-change material slurry. Thermal Science and Engineering Progress, 17, 100362. doi:

Khan, A. I., Valan Arasu, A. (2019). A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Thermal Science and Engineering Progress, 11, 334–364. doi:

Mahdi, M. S., Mahood, H. B., Hasan, A. F., Khadom, A. A., Campbell, A. N. (2019). Numerical study on the effect of the location of the phase change material in a concentric double pipe latent heat thermal energy storage unit. Thermal Science and Engineering Progress, 11, 40–49. doi:

Zhang, P., Hu, Y., Song, L., Lu, H., Wang, J., Liu, Q. (2009). Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material. Thermochimica Acta, 487 (1-2), 74–79. doi:

Janu, V. C., Bahuguna, G., Laishram, D., Shejale, K. P., Kumar, N., Sharma, R. K., Gupta, R. (2018). Surface fluorination of α-Fe2O3 using selectfluor for enhancement in photoelectrochemical properties. Solar Energy Materials and Solar Cells, 174, 240–247. doi:

Hezaveh, H., Fazlali, A., Noshadi, I. (2012). Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids. Journal of the Taiwan Institute of Chemical Engineers, 43 (1), 159–164. doi:

Hu, M., Yan, Z., Peng, L., Guo, N., Liu, Z. (2019). Optimization of preparation and analysis of Paraffin/SiO2 composite PCMs via sol-gel method. IOP Conference Series: Earth and Environmental Science, 242, 032005. doi:

Şahan, N., Paksoy, H. (2017). Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials. Solar Energy Materials and Solar Cells, 159, 1–7. doi:

Kılıçkap, S., El, E., Yıldız, C. (2018). Investigation of the effect on the efficiency of phase change material placed in solar collector tank. Thermal Science and Engineering Progress, 5, 25–31. doi:

Venkateshwar, K., Tasnim, S. H., Simha, H., Mahmud, S. (2020). Effect of spatially varying morphologies of metal foams on phase change process. Thermal Science and Engineering Progress, 19, 100667. doi:

👁 494
⬇ 496
How to Cite
Rahmalina, D., Adhitya, D. C., Rahman, R. A., & Ismail, I. (2021). Improvement the performance of composite PCM paraffin-based incorporate with volcanic ash as heat storage for low-temperature application. EUREKA: Physics and Engineering, (1), 53-61.

Most read articles by the same author(s)