Research on selection of abrasive grain size and cutting parameters when grinding of interrupted surface using aluminum oxide grinding wheel with ceramic binder

Keywords: Interrupted surface workpiece, external cylindrical grinding, aluminum oxide grinding wheel, ceramic binder

Abstract

In this article, a study on intermittent surface grinding using aluminum oxide grinding wheel with ceramic binder is presented. The testing material is 20XH3A steel (GOST standard – Russian Federation). The testing sample has been sawn 6 grooves, with the width of each groove of 10 mm, the grooves are evenly distributed on the circumference of sample. The testing sample resembles a splined shaft. An experimental matrix of nine experiments has been built by Taguchi method, in which abrasive grain size, workpiece speed, feed rate and depth of cut were selected as input variables. At each experiment, surface roughness (Ra) and roundness error (RE) have been measured. Experimental results show that the aluminum oxide and ceramic binder grinding wheels are perfectly suitable for grinding intermittent surface of 20XH3A steel. Data Envelopment Analysis based Ranking (DEAR) method has been used to solve the multi-objective optimization problem. The results also showed that in order to simultaneously ensure minimum surface roughness and RE, abrasive grain size is 80 mesh, workpiece speed is 910 rpm, feed rate is 0.05 mm/rev and depth of cut is 0.01 mm. If evaluating the grinding process through two criteria including surface roughness and RE, depth of cut is the parameter having the greatest effect on the grinding process, followed by the influence of feed rate, workpiece speed, and abrasive grain is the parameter having the least effect on the grinding process. In addition, the effect of each input parameter on each output parameter has also been analyzed, and orientations for further works have also been recommended in this article

Downloads

Download data is not yet available.

Author Biographies

Do Duc Trung, Hanoi University of Industry

Faculty of Mechanical Engineering

Le Dang Ha, Hanoi University of Industry

Center for Mechanical Engineering

References

Marinescu, I. D., Hitchiner, M. P., Uhlmann, E., Rowe, W. B., Inasaki, I. (2006). Handbook of Machining with Grinding Wheels. CRC Press, 632. doi: https://doi.org/10.1201/9781420017649

Malkin, S., Guo, C. (2008). Grinding technology: Theory and Applications of Machining with Abrasives. New York: Industrial Press.

Diniz, A. E., Gomes, D. M., Braghini, A. (2005). Turning of hardened steel with interrupted and semi-interrupted cutting. Journal of Materials Processing Technology, 159 (2), 240–248. doi: https://doi.org/10.1016/j.jmatprotec.2004.05.011

Diniz, A. E., de Oliveira, A. J. (2008). Hard turning of interrupted surfaces using CBN tools. Journal of Materials Processing Technology, 195 (1-3), 275–281. doi: https://doi.org/10.1016/j.jmatprotec.2007.05.022

Nayak, M., Sehgal, R. (2019). Experiment Modeling of Response Parameters and CBN Tool Wear in Continuous and Interrupted Hard Turning of AISI D6 Steel. Indian Journal of Science and Technology, 12 (19), 1–16. doi: https://doi.org/10.17485/ijst/2019/v12i19/143902

De Mello, H. J., de Mello, D. R., Rodriguez, R. L., Lopes, J. C., da Silva, R. B., de Angelo Sanchez, L. E. et. al. (2018). Contribution to cylindrical grinding of interrupted surfaces of hardened steel with medium grit wheel. The International Journal of Advanced Manufacturing Technology, 95 (9-12), 4049–4057. doi: https://doi.org/10.1007/s00170-017-1552-y

Mello, H. J. de, Mello, D. R. de, Bianchi, E. C., Aguiar, P. R. de, D’Addona, D. M. (2015). Grinding of AISI 4340 steel with interrupted cutting by aluminum oxide grinding wheel. Rem: Revista Escola de Minas, 68 (2), 229–238. doi: https://doi.org/10.1590/0370-44672015680070

Ribeiro, F. S. F., Lopes, J. C., Garcia, M. V., de Angelo Sanchez, L. E., de Mello, H. J., de Aguiar, P. R., Bianchi, E. C. (2020). Grinding assessment of workpieces with different interrupted geometries using aluminum oxide wheel with vitrified bond. The International Journal of Advanced Manufacturing Technology, 108 (3), 931–941. doi: https://doi.org/10.1007/s00170-020-05500-w

Rodriguez, R. L., Lopes, J. C., Garcia, M. V., Tarrento, G. E., Rodrigues, A. R., de Ângelo Sanchez, L. E. et. al. (2020). Grinding process applied to workpieces with different geometries interrupted using CBN wheel. The International Journal of Advanced Manufacturing Technology, 107 (3-4), 1265–1275. doi: https://doi.org/10.1007/s00170-020-05122-2

Köklü, U. (2013). Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method. International Journal of Computer Integrated Manufacturing, 26 (8), 696–702. doi: https://doi.org/10.1080/0951192x.2012.749537

Otaghvar, M. H., Hahn, B., Werner, H., Omiditabrizi, H., Bähre, D. (2018). A novel approach to roundness generation analysis in centerless through-feed grinding in consider of decisive parameters of grinding gap by use of 3D kinematic simulation. Procedia CIRP, 77, 247–250. doi: https://doi.org/10.1016/j.procir.2018.09.007

Cui, Q., Ding, H., Cheng, K. (2014). An analytical investigation on the workpiece roundness generation and its perfection strategies in centreless grinding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229 (3), 409–420. doi: https://doi.org/10.1177/0954405414530899

Hänel, A., Teicher, U., Pätzold, H., Nestler, A., Brosius, A. (2017). Investigation of a carbon fibre-reinforced plastic grinding wheel for high-speed plunge-cut centreless grinding application. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232 (14), 2663–2669. doi: https://doi.org/10.1177/0954405417690556

Dap, P., Tuan, N. A. (1983). Machine tool design. Ha Noi: Science and technics publishing House.

Girsang, I. P., Dhupia, J. S. (2014). Machine Tools for Machining. Handbook of Manufacturing Engineering and Technology, 811–865. doi: https://doi.org/10.1007/978-1-4471-4670-4_4

Long, B. T., Luc, T. T., Tuy, T. S. (2011). Principles of material processing. Ha Noi: Science and technics publishing House.

Nee, A. Y. C. (Ed.) (2015). Handbook of Manufacturing Engineering and Technology. Springer, 3500. doi: https://doi.org/10.1007/978-1-4471-4670-4

Karna, S. K., Sahai, R. (2012). An Overview on Taguchi Method. International Journal of Engineering and Mathematical Sciences, 1, 11–18. Available at: https://www.academia.edu/27762936/An_Overview_on_Taguchi_Method

Trung, D. D., Thien, N. V., Nguyen, N.-T. (2021). Application of TOPSIS Method in Multi-Objective Optimization of the Grinding Process Using Segmented Grinding Wheel. Tribology in Industry, 43 (1), 12–22. doi: https://doi.org/10.24874/ti.998.11.20.12

Dean, A., Voss, D., Draguljić, D. (2017). Design and Analysis of Experiments. Springer, 840. doi: https://doi.org/10.1007/978-3-319-52250-0

Mathews P. G. (2005). Design of Experiments with MINITAB. ASQ Quality Press Milwaukee, Wisconsin. Available at: https://www.academia.edu/23892705/Design_of_Experiments_with_MINITAB

Loc, N. D., Tien, L. V., Ton, N. D., Viet, T. X. (2010). Handbook of manufacturing technology. Ha Noi: Science and technics publishing House.

Du, N. V., Binh, N. D. (2011). Design of experiment techniques. Ha Noi: Science and technics publishing House.

Rowe, W. B. (2009). Principles of Modern Grinding Technology. William Andrew. Available at: https://www.sciencedirect.com/book/9780815520184/principles-of-modern-grinding-technology

Hung, T. Q., Duc, D. V., Son, N. H. (2018). Optimization of cutting parameters for minimum the surface roughness when grinding SKD11 steel on cylindrical grinder. Proceeding of the 5th National Conference on Mechanical Science & Technology. Ha Noi. Available at: https://sti.vista.gov.vn/tw/Lists/TaiLieuKHCN/Attachments/294811/41548-325-131388-1-10-20190718.pdf

Soepangkat, B. O. P., Agustin, H. C. K., Subiyanto, H. (2017). An investigation of force, surface roughness and chip in surface grinding of SKD 11 tool steel using minimum quantity lubrication-MQL technique. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4985459

Shaw, M. C. (1996). Energy Conversion in Cutting and Grinding*. CIRP Annals, 45 (1), 101–104. doi: https://doi.org/10.1016/s0007-8506(07)63025-x

Xu, W., Wu, Y., Sato, T., Lin, W. (2010). Effects of process parameters on workpiece roundness in tangential-feed centerless grinding using a surface grinder. Journal of Materials Processing Technology, 210 (5), 759–766. doi: https://doi.org/10.1016/j.jmatprotec.2010.01.003

Nguyen Hong, S., Vo Thi Nhu, U. (2021). Multi-objective Optimization in Turning Operation of AISI 1055 Steel Using DEAR Method. Tribology in Industry, 43 (1), 57–65. doi: https://doi.org/10.24874/ti.1006.11.20.01

Obiko, J. O., Mwema, F. M., Bodunrin, M. O. (2021). Validation and optimization of cutting parameters for Ti-6Al-4V turning operation using DEFORM 3D simulations and Taguchi method. Manufacturing Review, 8, 5. doi: https://doi.org/10.1051/mfreview/2021001

Muthuramalingam, T., Mohan, B. (2013). Multi-Response Optimization of Electrical Process Parameters on Machining Characteristics in Electrical Discharge Machining Using Taguchi-Data Envelopment Analysis-Based Ranking Methodology. Journal of Engineering and Technology, 3 (1), 57. doi: https://doi.org/10.4103/0976-8580.107103

Reddy, V., Reddy, C. S. (2016). Multi Response Optimization of EDM of AA6082 Material using Taguchi- DEAR Method. International Journal of Scientific & Engineering Research, 7 (6), 215–219. Available at: https://www.ijser.org/researchpaper/Multi-Response-Optimization-of-EDM-of-AA6082-Material-using-Taguchi--DEAR-Method.pdf

Muthuramalingam, T., Vasanth, S., Mohamed Rabik, M., Geethapriyan, T., Ramamurthy, A. (2016). Multi Response Optimization of EDM Process Parameters using Assignments of Weight Method. International Journal of Engineering Research & Technology, 4 (26), 1–3. Available at: https://www.ijert.org/research/multi-response-optimization-of-edm-process-parameters-using-assignments-of-weight-method-IJERTCONV4IS26024.pdf

Sandeep, M. J., Manjunath, P. G. C., Chate, G. R., Parappagoudar, M. B., Daivagna, U. M. (2019). Multi Response Optimization of Green Sand Moulding Parameters Using Taguchi-DEAR Method. Applied Mechanics and Materials, 895, 1–7. doi: https://doi.org/10.4028/www.scientific.net/amm.895.1


👁 104
⬇ 104
Published
2022-01-10
How to Cite
Trung, D. D., & Ha, L. D. (2022). Research on selection of abrasive grain size and cutting parameters when grinding of interrupted surface using aluminum oxide grinding wheel with ceramic binder. EUREKA: Physics and Engineering, (1), 93-102. https://doi.org/10.21303/2461-4262.2022.002058
Section
Engineering