Research of the biostability of organic bases of paints for wood

Keywords: biostability, organic film formers, Sabouraud and Czapek media, Aspergillus niger, wood

Abstract

The biostability of organic film-formers of paints and varnishes intended for staining wood to the action of the fungus Aspergillus niger was studied. It was found that in Sabouraud's environment on days 7, 14 and 21 from the beginning of infection, the epoxy hardener is characterized by the minimum level of damage, respectively, 1, 1.6 and 2.4 points; alkyd film former has 2 points, and in subsequent time intervals 3.7 points; epoxy resin on day 7 is characterized by a lesion level of 1.7 points, on the following days of exposure – 4 points; pentaphthalic film former, respectively, 2.7, 3.7 and 4 points. According to the degree of resistance in the Sabouraud environment, organic film-formers of wood paints can be ranked as follows: epoxy (hardener)>alkyd>epoxy resin>pentaphthalic>organosilicon. It is shown that in the environment of Czapek on 7, 14 and 21 days from the beginning of infection, the minimum level of damage is characterized by an epoxy hardener, respectively, 2, 2.3 and 3 points; pentaphthalic film former, respectively, 2 and 3 points; alkyd film former, respectively, 2.4, 3.7 and 4 points; epoxy resin on day 7 is characterized by a lesion level of 3 points, on the following days of exposure – 4 points. According to the degree of resistance in the environment of Czapek, organic film-forming agents for wood paints can be ranked as follows: epoxy (hardener)>pentaphthalic>alkyd>epoxy resin>organosilicon. Organosilicon film-formers were most intensively affected by the fungus both 7 days after exposure and at a later time, reaching the maximum values of the lesions – 4 points. During the test period, no zones of mycelium growth inhibition were observed in the studied organic bases

Downloads

Download data is not yet available.

Author Biographies

Sergii Guzii, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine

Department of Physics and Chemistry of Polymers

Ihar Bazhelka, Belarusian State Technological University

Department of Woodworking Technology

Anastasiya Kanavalava, Belarusian State Technological University

Department of Woodworking Technology

References

Stranger-Johannessen, M., Norgaard, E. (1991). Deterioration of anti-corrosive paints by extracellular microbial products. International Biodeterioration, 27 (2), 157–162. doi: https://doi.org/10.1016/0265-3036(91)90007-e

Aspergillus niger. MYCOBANK Database. Available at: https://www.mycobank.org/page/Name%20details%20page/name/Aspergillus%20niger

Wang, X. W., Houbraken, J., Groenewald, J. Z., Meijer, M., Andersen, B., Nielsen, K. F. et. al. (2016). Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Studies in Mycology, 84, 145–224. doi: https://doi.org/10.1016/j.simyco.2016.11.005

Rai, M., Bridge, P. D. (Eds.) (2009). Applied Mycology. CABI, 336. doi: https://doi.org/10.1079/9781845935344.0000

Stoye, D., Freitag, W. (Eds.) (1998). Paints, coatings and solvents. John Wiley & Sons. doi: https://doi.org/10.1002/9783527611867

Schultz, T. P., Nicholas, D. D. (2004). Solid Wood Processing | Protection of Wood against Biodeterioration. Encyclopedia of Forest Sciences, 1274–1282. doi: https://doi.org/10.1016/b0-12-145160-7/00048-x

Arreche, R., Vázquez, P. (2020). Green biocides to control biodeterioration in materials science and the example of preserving World Heritage Monuments. Current Opinion in Green and Sustainable Chemistry, 25, 100359. doi: https://doi.org/10.1016/j.cogsc.2020.100359

Sabadaha, E. N., Prokopchuk, N. R., Goncharova, I. A. (2010). Vliyanie metabolitov gribov na fiziko-mehanicheskie svoystva lakokrasochnyh pokrytiy. Trudy BGTU. Seriya IV. Himiya, tehnologiya organicheskih veschestv i biotehnologiya, XVIII, 306–309. Available at: https://cyberleninka.ru/article/n/vliyanie-metabolitov-gribov-na-fiziko-mehanicheskie-svoystva-lakokrasochnyh-pokrytiy

Gorban, M. V., Yampolskaya, T. D. (2012). Physiological aspects of synthetic and natural polymers destruction by collection and native strains of micromycetes. Izvestiya Samarskogo nauchnogo centra Rossiyskoy akademii nauk, 14 (1 (9)), 2206–2210. Available at: https://cyberleninka.ru/article/n/fiziologicheskie-aspekty-destruktsii-sinteticheskih-i-prirodnyh-polimerov-kollektsionnymi-i-aborigennymi-shtammami-mikromitsetov

Biodeterioration of materials. Microbiological and allied aspects: Proceedings of the 1st International Biodeterioration Symposium, Southampton, 9th–14th September, 1968. Edited by A. H. Walters and J. J. Elphick. Elsevier Publishing Co., Ltd., London, 1968. pp. x + 740. 250s (1969). Food and Cosmetics Toxicology. 7, 638–639. doi: https://doi.org/10.1016/s0015-6264(69)80468-2

Watkinson, S. C., Eastwood, D. C. (2012). Serpula lacrymans, Wood and Buildings. Advances in Applied Microbiology, 121–149. doi: https://doi.org/10.1016/b978-0-12-394805-2.00005-1

Moncmanová, A. (2007). Environmental factors that influence the deterioration of materials. WIT Transactions on State of the Art in Science and Engineering, 1–25. doi: https://doi.org/10.2495/978-1-84564-032-3/01

Sabadaha, E. N., Prokopchuk, N. R., Shutova, A. L. (2016). The environmental impact reduction principles of bioprotective paintwork material during the wood surface paint. Trudy BGTU, 4, 225–231. Available at: https://elib.belstu.by/handle/123456789/18560

Gámez-Espinosa, E., Bellotti, N., Deyá, C., Cabello, M. (2020). Mycological studies as a tool to improve the control of building materials biodeterioration. Journal of Building Engineering, 32, 101738. doi: https://doi.org/10.1016/j.jobe.2020.101738

Allsopp, D., Seal, K. J., Gaylarde, Ch. C. (2004). Introduction to biodeterioration. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511617065

Gillatt, J., Julian, K., Brett, K., Goldbach, M., Grohmann, J., Heer, B. et. al. (2015). The microbial resistance of polymer dispersions and the efficacy of polymer dispersion biocides – A statistically validated method. International Biodeterioration & Biodegradation, 104, 32–37. doi: https://doi.org/10.1016/j.ibiod.2015.04.028

De Souza, A., Gaylarde, C. C. (2002). Biodeterioration of varnished wood with and without biocide: implications for standard test methods. International Biodeterioration & Biodegradation, 49 (1), 21–25. doi: https://doi.org/10.1016/s0964-8305(01)00102-0

Grant, C., Wright, I. C., Springle, W. R., Greenhalgh, M. (1993). Collaborative investigations of laboratory test methods for evaluation of the growth of pink yeasts on paint films. International Biodeterioration & Biodegradation, 32 (4), 279–288. doi: https://doi.org/10.1016/0964-8305(93)90030-6

Stroganov, V. F., Sagadeev, E. V. (2014). Vvedenie v biopovrezhdenie stroitel'nyh materialov. Kazan': Izd-vo KGASU, 200. Available at: https://search.rsl.ru/ru/record/01008008996

Stroganov, V. F., Sagadeev, E. V. (2018). Biopovrezhdenie stroitel'nyh materialov. Kazan': Izd-vo KGASU, 61. Available at: https://www.kgasu.ru/upload/iblock/a63/Biopovrezhdenie-stroitelnykh-materialov-Stroganov-V.F.-Sagadeev-E.V..pdf


👁 45
⬇ 40
Published
2021-11-18
How to Cite
Guzii, S., Bazhelka, I., & Kanavalava, A. (2021). Research of the biostability of organic bases of paints for wood. EUREKA: Physics and Engineering, (6), 11-18. https://doi.org/10.21303/2461-4262.2021.002142
Section
Chemical Engineering