Characteristics and performance analysis of different grain sizes bamboo-activated carbons for motorcycle flue gas adsorption

Keywords: activated carbon, adsorption, flue gas, emission, swat bamboo


The use of fossil fuels in human activities such as motorcycles has led to an increase in the concentration emitted in the atmosphere. Various efforts and methods such as adsorption using activated carbon have been developed and applied to reduce the emission. Therefore, this study focuses on the characteristics and performance of bamboo-activated carbons in the adsorption of motorcycle flue gases. This was carried out using different grain sizes (z) of activated carbons AC-M1, AC-M2, and AC-M3 for grain sizes of z≤250, 250<z≤420, and 420<z≤590 microns, respectively, which were derived from swat bamboo and carbonized at a temperature of 750 C. Furthermore, physical activation was applied by heating the charcoal at the same temperature under a nitrogen flow rate of 150 mL/min nitrogen. The Thermogravimetric (TGA), scanning electron microscopy (SEM), and adsorption isotherm tests were employed for the characterization of activated carbons. Additionally, the performances of activated carbons for motorcycle flue gas adsorption (CO2, CO, and HC) were carried out by a motorcycle emission test. According to the results, activated carbon AC-M1 produced the best characteristics and performance for adsorption of motorcycle flue gas, as it has a pore volume of 0.135 cm3/g, a specific surface area of 244.69 m2/g, and a nitrogen adsorption capacity of 87.047 cm3/g. These characteristics prove to have good adsorption efficiencies at 100 %, 87.30 %, and 100 % for adsorption of CO2, CO, and HC, respectively.


Download data is not yet available.

Author Biographies

Dewa Ngakan Ketut Putra Negara, Udayana University

Department of Mechanical Engineering

Department of Mechanical Engineering Master Program

Tjokorda Gde Tirta Nindhia, Udayana University

Department of Mechanical Engineering

Made Sucipta, Udayana University

Department of Mechanical Engineering

I Made Widiyarta, Udayana University

Department of Mechanical Engineering

I Putu Hariwangsa, Udayana University

Department of Mechanical Engineering


Siriwardane, R. V., Shen, M. S., Fisher, E. P., Poston, J. A. (2001). Adsorption of CO2 on molecular sieves and activated carbon. Energy and Fuels, 15 (2), 279–284. doi:

Yang, H., Xu., Z, Fan, M., Gupta, R., Slimane, R, B., Bland, A. E., Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20 (1), 14–27. doi:

Manyà, J. J., González, B., Azuara, M., Arner, G. (2018). Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chemical Engineering Journal, 345, 631–639. doi:

Li, J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H.,. K et. al. (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 255 (15-16), 1791–1823. doi:

Han, J., Zhang, L., Zhao B, Qin L, Wang, Y., Xing, F. (2019). The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption. IIndustrial Crops and Products, 128, 290–297. doi:

Hasil Sensus BPS: Jumlah Kendaraan Bermotor di Indonesia Tembus 133 Juta Unit (2021). Gaikindo. The Assosiation of Indonesia Automotive Industries. Available at:

Bali Provincial Statistics Agency Number Mot. Veh. by regency/city Bali 2010–2019. Available at:

Weiyi, F., Yifei, S., Tianle, Zhu., Yie, W. (2012). Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in China in 2010. Atmospheric Environment, 56, 52–57. doi:

Lei, L., Ning, Z., Wei, W., Yuhan, S., (2013). A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel, 108, 112–130. doi:

Bahamon, D., Díaz-Márquez, A., Gamallo, P., Vega, L. F. (2018). Energetic evaluation of swing adsorption processes for CO2 capture in selected MOFs and zeolites: Effect of impurities. Chemical Engineering Journal, 342, 458–473. doi:

Yang, G., Song, S., Li, J., Tang, Z., Ye, J., Yang, J. (2018). Preparation and CO2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves. Journal of Materials Science & Technology, 35, 875–884. Doi:

Rashidi, N. A., Yusup, S. (2016). An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization, 13, 1–16. doi:

Abuelnoor, N., AlHajaj, A., Khaleel, M., Vega, L. F., Abu-Zahra, M. R. M. (2021). Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere, 282, 131111. doi:

Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A., Quinn, D. F. (2002). Activated carbon monoliths for methane storage: Influence of binder. Carbon, 40, 2817–2825. doi:

Bensidhom, G., Ben Hassen-Trabelsi, A., Alper, K., Sghairoun, M., Zaafouri, K., Trabelsi, I. (2018). Pyrolysis of date palm waste in a fixed-bed reactor: Characterization of pyrolytic products. Bioresource Technology, 247, 363–369. doi:

Choi, S. W., Tang, J., Pol, V. G., Lee, K. B. (2019). Pollen-derived porous carbon by KOH activation: Effect of physicochemical structure on CO2 adsorption. Journal of CO2 Utilization, 29, 146–155. doi:

de Andrés, J. M., Orjales, L., Narros, A., de la Fuente, M. del M., Rodríguez, M. E. (2013). Carbon dioxide adsorption in chemically activated carbon from sewage sludge. Journal of the Air & Waste Management Association, 63 (5), 557–564. doi:

Yokoyama, J. T. C., Cazetta, A. L., Bedin, K. C., Spessato, L., Fonseca, J. M., Carraro, P. S. et. al. (2019). Stevia residue as new precursor of CO2-activated carbon : Optimization of preparation condition and adsorption study of triclosan. Ecotoxicology and Environmental Safety, 172, 403–410. doi:

Li, M., Xiao, R. (2019). Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 capture. Fuel Processing Technology, 186, 35–39. doi:

Shoaib, M., Al-Swaidan, H. M. (2015). Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation. Biomass and Bioenergy, 73, 124–134. doi:

Pu, Q., Zou, J., Wang, J., Lu, S., Ning, P., Huang, L., Wang, Q. (2021). Systematic study of dynamic CO2 adsorption on activated carbons derived from different biomass. Journal of Alloys and Compounds, 887, 161406. doi:

Huang, T., Qiu, Z., Wu, D., Hu, Z. (2015). Bamboo-based activated carbon @ MnO2 nanocomposites for flexible high-performance supercapacitor electrode materials. International Journal of Electrochemical Science, 10, 6312–6323.

Lu, B., Hu, L., Yin, H., Mao, X., Xiao, W., Wang, D. (2016). Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. International Journal of Hydrogen Energy, 41, 18713–18720. doi:

Kim, Y. J., Lee, B. J., Suezaki, H., Chino, T., Abe, Y., Yanagiura, T., Park, K. C., Endo, M. (2006). Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon, 44 (8), 1592–1595. doi:

Zhang, G., Chen, Y., Chen, Y., Guo, H. (2018). Activated biomass carbon made from bamboo as electrode material for supercapacitors. Materials Research Bulletin, 102, 391–398. doi:

Yang, C. S., Jang, Y. S., Jeong, H. K. (2014). Bamboo-based activated carbon for supercapacitor applications. Current Applied Physics, 14, 1616–1620. doi:

Koo, W. K., Gani, N. A., Shamsuddin, M. S., Subki, N. S., Sulaiman, M. A. (2015). Comparison of wastewater treatment using activated carbon from bamboo and oil palm: an overview. Journal of Tropical Resources and Sustainable Science, 3, 54–60. doi:

Harcourt, P. (2012). Effectiveness of Nigerian bamboo activated with different activating agents on the adsorption of BTX. Journal of Applied Sciences and Environmental Management, 16 (3), 267–273.

Negara, D. N. K. P., Nindhia, T. G. T., Surata, I. W., Hidajat, F., Sucipta, M. (2019). Nanopore structures, surface morphology, and adsorption capacity of tabah bamboo-activated carbons. Surfaces and Interfaces, 16, 22–28. doi:

Gu, X. X., Wang, Y. Z., Lai, C., Qiu, J. X., Li, S., Hou, Y. L. et. al. (2015). Microporous bamboo biochar for lithium-sulfur batteries. Nano Research, 8, 129–139. doi:

Choy, K. K. H., Barford, J. P., McKay, G. (2005). Production of activated carbon from bamboo scaffolding waste - Process design, evaluation and sensitivity analysis. Chemical Engineering Journal, 109, 147–165.

Astika, I. M., Negara, D. N. K. P,, Kencanawati, C. I. P. K., Nindhia, T. G.., Hidajat, F. (2019). Proximate and morphology properties of swat bamboo activated carbon carburized under different carbonization temperature. IOP Conference Series: Materials Science and Engineering, 539 (1), 012010. doi:

Mahanim, S. M. A., Wan Asma, I., Rafidah, J., Puad, E., Shaharuddin, H. (2011). Production of activated carbon from industrial bamboo wastes. Journal of Tropical Forest Science, 23 (4), 417–424. Available at:

Zhao, Y., Fang, F., Xiao, H. M., Feng, Q. P., Xiong, L. Y., Fu, S. Y. (2015). Preparation of pore-size controllable activated carbon fibers from bamboo fibers with superior performance for xenon storage. Chemical Engineering Journal, 270, 528–34. doi:

Sucipta, M., Putra Negara, D. N. K., Tirta Nindhia, T. G., Surata, I. W. (2017). Characteristics of ampel bamboo as a biomass energy source potential in Bali. IOP Conference Series: Materials Science and Engineering, 201. doi:

Khuongab, D. A., Nguyen, H. N., Tsubota, T. (2021). Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass and Bioenergy, 148, 106039. doi:

Zhou, J., Luo, A., Zhao, Y. (2018). Preparation and characterisation of activated carbon from waste tea by physical activation using steam. Journal of the Air & Waste Management Association, 68, 1269–1277. doi:

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069. doi:

Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q., Wang, Y. (2013). Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7and KOH. Chemical Engineering Journal, 232, 582–590. doi:

Kupgan, G., Liyana-Arachchi, T. P., Colina, C. M. (2017). NLDFT Pore size distribution in amorphous microporous materials. Langmuir, 33, 11138–11145. doi:

Negara, D. N. K. P., Nindhia, T. G. T., Sucipta, M., Surata, I. W., Astrawan, K. S., Wangsa, I. P. H. (2021). Simultaneous adsorption of motorcycle emissions through bamboo-activated carbon. International Journal of Global Energy Issues, 43, 199–210. doi:

Viena, V., Elvitriana, E., Wardani, S. (2018). Application of banana peels waste as adsorbents for the removal of CO2, NO, NOx, and SO2 gases from motorcycle emissions. IOP Conference Series: Materials Science and Engineering, 334, 012037. doi:

Rajdurai, M. S., Rao, A. H. S., Kamalakkannan, K. (2016). CO2 capture using activated alumina in gasoline passenger vehicles. International journal of engineering research and applications, 6, 73–77. Available at :

Sameer, S., Vijayabalan, P., Rajadurai, M. S. (2016). Control of carbon dioxide and other emissions from diesel operated engines using activated charcoal. Advances in Automobile Engineering, 5 (2), 1–6. doi:

Sandoval, A. N., Tavera, J., Vela, F., Calla, K. M., Alba, R. A., Lloclla, H., Flores, J. W. V. (2021). Adsorption of gases by internal combustion of trimobiles using activated carbon filter of mauritia flexuosa and cocos nucifera. Chemical Engineering Transactions, 85, 157–62. doi:

Yuliusman, Ayu, M. P., Hanafi, A., Nafisah, A. R. (2020). Adsorption of carbon monoxide and hydrocarbon components in motor vehicle exhaust emission using magnesium oxide loaded on durian peel activated carbon. International Conference On Emerging Applications In Material Science And Technology: ICEAMST 2020, 2230, 1–6. doi:

McDougall, G. J. (1991). Physical nature and manufacture of activated carbon. Journal of the Southern African Institute of Mining and Metallurgy, 91 (4), 109–120.

Pore size distribution of activated carbons

👁 60
⬇ 100
How to Cite
Negara, D. N. K. P., Nindhia, T. G. T., Sucipta, M., Widiyarta, I. M., & Hariwangsa, I. P. (2022). Characteristics and performance analysis of different grain sizes bamboo-activated carbons for motorcycle flue gas adsorption. EUREKA: Physics and Engineering, (5), 21-31.
Chemical Engineering