Development of a rangefinding method for determining the coordinates of targets by a network of radar stations in counter-battery warfare
Abstract
The increase in the accuracy of determining the coordinates of targets is explained by the use of a network of counter-battery radar stations and the rangefinding method for determining the coordinates of targets. The main advantage of using the rangefinding method for determining the coordinates of targets in a network of counter-battery radar stations is to ensure the required accuracy in determining the coordinates of targets without using accurate measurement of angular coordinates. The minimum geometry of the system, which ensures the use of the rangefinding method for determining coordinates, is given. The method of determining the coordinates of targets by a network of counter-battery radar stations has been improved. In contrast to the known ones, information about the range to the target is additionally used in a spatially distributed network of radar stations for counter-battery combat. The boundaries of the working zones of the network of two and three counter-battery radar stations are calculated. The features of creating a continuous strip using the rangefinding method for determining the coordinates of the target are considered. Statistical modeling of the rangefinding method for determining the plane coordinates of the target has been carried out.
It has been established that the use of the rangefinding method ensures the determination of the planar coordinates of the target in a sector of at least 120°. The targets are at a distance of direct radio visibility in relation to the counter-battery radar. The root-mean-square error in determining the target range in this case is no more than 50 m. It has been established that the creation of continuous bands of a low-altitude radar field at a certain height is possible by arranging radar stations in a line. In this case, the distance between the counter-battery radar stations should be no more than half the target detection range at this height
Downloads
References
Soldier killed in Pak firing, shelling in J&K's Rajouri district (2021). Available at: https://economictimes.indiatimes.com/news/defence/soldier-killed-in-pak-firing-shelling-in-jks-rajouri-district/articleshow/80062081.cms
Counter-Rocket, Artillery, Mortar (C-RAM) (2018). Available at: https://missiledefenseadvocacy.org/defense-systems/counter-rocket-artillery-mortar-c-ram/
PdM Radars AN/TPQ-48. New Equipment Training. Introduction / Theory of Operations (2010).
Frid, H., Jonsson, B. L. G. (2018). Determining Installation Errors for DOA Estimation with Four-Quadrant Monopulse Arrays by Using Installed Element Patterns. 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC). doi: https://doi.org/10.23919/ursi-at-rasc.2018.8471377
Zhang, Y.-X., Liu, Q.-F., Hong, R.-J., Pan, P.-P., Deng, Z.-M. (2016). A Novel Monopulse Angle Estimation Method for Wideband LFM Radars. Sensors, 16 (6), 817. doi: https://doi.org/10.3390/s16060817
Khudov, H., Lisogorsky, B., Sokolovskyi, S., Ostrovskyi, A., Losa, V., Khizhnyak, I. (2020). The Method of Increasing Resolution in Network of Radars type as AN/TPQ-49. International Journal of Emerging Trends in Engineering Research, 8 (9), 5726–5732. doi: https://doi.org/10.30534/ijeter/2020/132892020
Richards, M. A., Scheer, J. A., Holm, W. A. (Eds.) (2010). Principles of modern radar. Basic principles. IET. doi: https://doi.org/10.1049/sbra021e
Marpl-ml, S. L. (1990). Tsifrovoy spektral'niy analiz i yego prilozheniya. Moscow: Mir, 584.
Geyster, S. R., Chugay, K. H. (2003). Interpacket coherent accumulation as a method of raising the quality of estimation of radar signals spectral characteristics. Doklady BGUIR, 1 (3), 37–41. Available at: https://www.bsuir.by/m/12_100229_1_57635.pdf
Helstrom, K. (1963). Statistical theory of signal detection. Moscow: Publishing house of foreign. lit., 431.
Shirman, Y. D. (1974). Razresheniye i szhatiye signalov. Moscow: Sovetskoye radio, 360.
Trifonov, A. P., Shinakov, Y. S. (1986). Sovmestnoye razlicheniye signalov i otsenka ikh parametrov na fone pomekh. Moscow: Radio i svyaz', 264.
Chizhov, A. A. (2010). Sverkhreleyevskoye razresheniye. Vol. 2. Preodoleniye faktora nekorrektnosti obratnoy zadachi rasseyaniya i proyektsionnaya radiolokatsiya. Moscow: Krasand, 104.
Klochko, V. K., Moybenko, V. I., Yermakov, A. A. (2006). Povysheniye razreshayushchey sposobnosti RLS po dal'nosti putem obrabotki sintezirovannykh izmereniy v strobakh dal'nosti. Visti vyshchykh uchbovykh zakladiv. Radioelektronika, 49 (3), 70–75. doi: https://doi.org/10.20535/S0021347006030113
Zrazhevskiy, A. U., Kokoshkin, A. V., Korotkov, V. A. (2013). Osobennosti primeneniya inversnoj fil’tracii dlya vosstanovleniya izobrazheniy s uchetom kvantovaniya jarkosti pri zapisi v BMP fayl. Moscow: IRE im. V. A. Kotelnikova, 6.
Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57 (8), 1408–1418. doi: https://doi.org/10.1109/proc.1969.7278
Schmidt, R., Franks, R. (1986). Multiple source DF signal processing: An experimental system. IEEE Transactions on Antennas and Propagation, 34 (3), 281–290. doi: https://doi.org/10.1109/tap.1986.1143815
Pesavento, M., Gershman, A. B., Haardt, M. (2000). Unitary root-MUSIC with a real-valued eigendecomposition: a theoretical and experimental performance study. IEEE Transactions on Signal Processing, 48 (5), 1306–1314. doi: https://doi.org/10.1109/78.839978
Chernyak, V. S. (2012). Mnogopozitsionniye radiolokatsionnyye sistemy na osnove MIMO RLS. Uspekhi sovremennoy radioelektroniki, 8, 29–46.
Ruban, I. (2020). The Calculating Effectiveness Increasing of Detecting Air Objects by Combining Surveillance Radars into The Coherent System. International Journal of Emerging Trends in Engineering Research, 8 (4), 1295–1301. doi: https://doi.org/10.30534/ijeter/2020/58842020
Pyunninen, S. A. (2012). Metod opredeleniya koordinat i parametrov dvizheniya nelineyno dvizhushchegosya ob'yekta s ispol'zovaniyem tol'ko uglomernoy informatsii. Nauchniy zhurnal KubGAU, 78 (04), 1–10.
Lysiy, N. I., Gurman, I. V., Zvezhinskiy, S. S. (2013). Opredeleniye mestopolozheniya ob'yekta s ispol'zovaniyem uluchshennoy trekhtochechnoy passivnoy sistemy. Spetstekhnika i svyaz', 2, 27–29.
Potapova, T. P., Toporkov, N. V., Shabatura, Y. M. (2010). Algoritm opredeleniya koordinat istochnikov radioizlucheniya s letatel'nogo apparata na osnove fazovo-vremennoy signal'noy informatsii ot dvukh priyemnykh moduley. Vestnik MGTU im. N. E. Baumana, 1, 52–61.
Khudov, H. (2020). The Synthesis of the Optimal Decision Rule for Detecting an Object in a Joint Search and Detection of Objects by the Criterion of Maximum Likelihood. International Journal of Emerging Trends in Engineering Research, 8 (2), 520–524. doi: https://doi.org/10.30534/ijeter/2020/40822020
Khudov, H., Lishchenko, V., Lanetskii, B., Lukianchuk, V., Stetsiv, S., Kravchenko, I. (2020). The Coherent Signals Processing Method in the Multiradar System of the Same Type Two-coordinate Surveillance Radars with Mechanical Azimuthal Rotation. International Journal of Emerging Trends in Engineering Research, 8 (6), 2624–2630. doi: https://doi.org/10.30534/ijeter/2020/66862020
Liang, J., Wang, D., Su, L., Chen, B., Chen, H., So, H. C. (2016). Robust MIMO radar target localization via nonconvex optimization. Signal Processing, 122, 33–38. doi: https://doi.org/10.1016/j.sigpro.2015.11.004
Li, Z., Chung, P.-J., Mulgrew, B. (2017). Distributed target localization using quantized received signal strength. Signal Processing, 134, 214–223. doi: https://doi.org/10.1016/j.sigpro.2016.12.003
Poli, R. (2008). Analysis of the Publications on the Applications of Particle Swarm Optimisation. Journal of Artificial Evolution and Applications, 2008, 1–10. doi: https://doi.org/10.1155/2008/685175
Piotrowsky, L., Jaeschke, T., Kueppers, S., Siska, J., Pohl, N. (2019). Enabling High Accuracy Distance Measurements With FMCW Radar Sensors. IEEE Transactions on Microwave Theory and Techniques, 67 (12), 5360–5371. doi: https://doi.org/10.1109/tmtt.2019.2930504
Shin, S.‐J. (2017). Radar measurement accuracy associated with target RCS fluctuation. Electronics Letters, 53 (11), 750–752. doi: https://doi.org/10.1049/el.2017.0901
Cho, I.-S., Lee, Y., Baek, S. J. (2020). Real-Time Inter-Vehicle Data Fusion Based on a New Metric for Evidence Distance in Autonomous Vehicle Systems. Applied Sciences, 10 (19), 6834. doi: https://doi.org/10.3390/app10196834
Oleksenko, O., Khudov, H., Petrenko, K., Horobets, Y., Kolianda, V. et. al. (2021). The Development of the Method of Radar Observation System Construction of the Airspace on the Basis of Genetic Algorithm. International Journal of Emerging Technology and Advanced Engineering, 11 (8), 23–30. doi: https://doi.org/10.46338/ijetae0821_04
Khudov, H., Yuzova, I., Lisohorskyi, B., Solomonenko, Y., Mykus, S., Irkha, A. et. al. (2021). Development of methods for determining the coordinates of firing positions of roving mortars by a network of counter-battery radars. EUREKA: Physics and Engineering, 3, 140–150. doi: https://doi.org/10.21303/2461-4262.2021.001821
Li, J., Stoica, P. (Eds.) (2008). MIMO radar signal processing. John Wiley & Sons. doi: https://doi.org/10.1002/9780470391488
Copyright (c) 2022 Hennadii Khudov, Andrii Zvonko, Bohdan Lisohorskyi, Yuriy Solomonenko, Petro Mynko, Sergey Glukhov, Artem Irkha, Vitaliy Lishchenko, Yaroslav Mishchenko, Vladyslav Khudov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.