Development of a rangefinding method for determining the coordinates of targets by a network of radar stations in counter-battery warfare

Keywords: rangefinding method, determination of coordinates, target, radar station, counter-battery warfare

Abstract

The increase in the accuracy of determining the coordinates of targets is explained by the use of a network of counter-battery radar stations and the rangefinding method for determining the coordinates of targets. The main advantage of using the rangefinding method for determining the coordinates of targets in a network of counter-battery radar stations is to ensure the required accuracy in determining the coordinates of targets without using accurate measurement of angular coordinates. The minimum geometry of the system, which ensures the use of the rangefinding method for determining coordinates, is given. The method of determining the coordinates of targets by a network of counter-battery radar stations has been improved. In contrast to the known ones, information about the range to the target is additionally used in a spatially distributed network of radar stations for counter-battery combat. The boundaries of the working zones of the network of two and three counter-battery radar stations are calculated. The features of creating a continuous strip using the rangefinding method for determining the coordinates of the target are considered. Statistical modeling of the rangefinding method for determining the plane coordinates of the target has been carried out.

It has been established that the use of the rangefinding method ensures the determination of the planar coordinates of the target in a sector of at least 120°. The targets are at a distance of direct radio visibility in relation to the counter-battery radar. The root-mean-square error in determining the target range in this case is no more than 50 m. It has been established that the creation of continuous bands of a low-altitude radar field at a certain height is possible by arranging radar stations in a line. In this case, the distance between the counter-battery radar stations should be no more than half the target detection range at this height

Downloads

Download data is not yet available.

Author Biographies

Hennadii Khudov, Ivan Kozhedub Kharkiv National Air Force University

Department of Radar Troops Tactic

Andrii Zvonko, Hetman Petro Sahaidachnyi National Army Academy

Department of Rocket Artillery Armament

Bohdan Lisohorskyi, Ivan Kozhedub Kharkiv National Air Force University

Department of Radar Troops Tactic

Yuriy Solomonenko, Ivan Kozhedub Kharkiv National Air Force University

Department of Radar Troops Tactic

Petro Mynko, Kharkiv National University of Radio Electronics

Department of Higher Mathematics

Sergey Glukhov, Military Institute of Taras Shevchenko Kyiv National University

Department of Military and Technical Training

Artem Irkha, National Defence University of Ukraine named after Ivan Cherniakhovskyi

Department of Space Systems and Geographic Information Support

Vitaliy Lishchenko, Ivan Kozhedub Kharkiv National Air Force University

Department of Radar Troops Tactic

Yaroslav Mishchenko, Hetman Petro Sahaidachnyi National Army Academy

Department Armored Vehicles

Vladyslav Khudov, Kharkiv National University of Radio Electronics

Department of Information Technology Security

References

Soldier killed in Pak firing, shelling in J&K's Rajouri district (2021). Available at: https://economictimes.indiatimes.com/news/defence/soldier-killed-in-pak-firing-shelling-in-jks-rajouri-district/articleshow/80062081.cms

Counter-Rocket, Artillery, Mortar (C-RAM) (2018). Available at: https://missiledefenseadvocacy.org/defense-systems/counter-rocket-artillery-mortar-c-ram/

PdM Radars AN/TPQ-48. New Equipment Training. Introduction / Theory of Operations (2010).

Frid, H., Jonsson, B. L. G. (2018). Determining Installation Errors for DOA Estimation with Four-Quadrant Monopulse Arrays by Using Installed Element Patterns. 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC). doi: https://doi.org/10.23919/ursi-at-rasc.2018.8471377

Zhang, Y.-X., Liu, Q.-F., Hong, R.-J., Pan, P.-P., Deng, Z.-M. (2016). A Novel Monopulse Angle Estimation Method for Wideband LFM Radars. Sensors, 16 (6), 817. doi: https://doi.org/10.3390/s16060817

Khudov, H., Lisogorsky, B., Sokolovskyi, S., Ostrovskyi, A., Losa, V., Khizhnyak, I. (2020). The Method of Increasing Resolution in Network of Radars type as AN/TPQ-49. International Journal of Emerging Trends in Engineering Research, 8 (9), 5726–5732. doi: https://doi.org/10.30534/ijeter/2020/132892020

Richards, M. A., Scheer, J. A., Holm, W. A. (Eds.) (2010). Principles of modern radar. Basic principles. IET. doi: https://doi.org/10.1049/sbra021e

Marpl-ml, S. L. (1990). Tsifrovoy spektral'niy analiz i yego prilozheniya. Moscow: Mir, 584.

Geyster, S. R., Chugay, K. H. (2003). Interpacket coherent accumulation as a method of raising the quality of estimation of radar signals spectral characteristics. Doklady BGUIR, 1 (3), 37–41. Available at: https://www.bsuir.by/m/12_100229_1_57635.pdf

Helstrom, K. (1963). Statistical theory of signal detection. Moscow: Publishing house of foreign. lit., 431.

Shirman, Y. D. (1974). Razresheniye i szhatiye signalov. Moscow: Sovetskoye radio, 360.

Trifonov, A. P., Shinakov, Y. S. (1986). Sovmestnoye razlicheniye signalov i otsenka ikh parametrov na fone pomekh. Moscow: Radio i svyaz', 264.

Chizhov, A. A. (2010). Sverkhreleyevskoye razresheniye. Vol. 2. Preodoleniye faktora nekorrektnosti obratnoy zadachi rasseyaniya i proyektsionnaya radiolokatsiya. Moscow: Krasand, 104.

Klochko, V. K., Moybenko, V. I., Yermakov, A. A. (2006). Povysheniye razreshayushchey sposobnosti RLS po dal'nosti putem obrabotki sintezirovannykh izmereniy v strobakh dal'nosti. Visti vyshchykh uchbovykh zakladiv. Radioelektronika, 49 (3), 70–75. doi: https://doi.org/10.20535/S0021347006030113

Zrazhevskiy, A. U., Kokoshkin, A. V., Korotkov, V. A. (2013). Osobennosti primeneniya inversnoj fil’tracii dlya vosstanovleniya izobrazheniy s uchetom kvantovaniya jarkosti pri zapisi v BMP fayl. Moscow: IRE im. V. A. Kotelnikova, 6.

Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57 (8), 1408–1418. doi: https://doi.org/10.1109/proc.1969.7278

Schmidt, R., Franks, R. (1986). Multiple source DF signal processing: An experimental system. IEEE Transactions on Antennas and Propagation, 34 (3), 281–290. doi: https://doi.org/10.1109/tap.1986.1143815

Pesavento, M., Gershman, A. B., Haardt, M. (2000). Unitary root-MUSIC with a real-valued eigendecomposition: a theoretical and experimental performance study. IEEE Transactions on Signal Processing, 48 (5), 1306–1314. doi: https://doi.org/10.1109/78.839978

Chernyak, V. S. (2012). Mnogopozitsionniye radiolokatsionnyye sistemy na osnove MIMO RLS. Uspekhi sovremennoy radioelektroniki, 8, 29–46.

Ruban, I. (2020). The Calculating Effectiveness Increasing of Detecting Air Objects by Combining Surveillance Radars into The Coherent System. International Journal of Emerging Trends in Engineering Research, 8 (4), 1295–1301. doi: https://doi.org/10.30534/ijeter/2020/58842020

Pyunninen, S. A. (2012). Metod opredeleniya koordinat i parametrov dvizheniya nelineyno dvizhushchegosya ob'yekta s ispol'zovaniyem tol'ko uglomernoy informatsii. Nauchniy zhurnal KubGAU, 78 (04), 1–10.

Lysiy, N. I., Gurman, I. V., Zvezhinskiy, S. S. (2013). Opredeleniye mestopolozheniya ob'yekta s ispol'zovaniyem uluchshennoy trekhtochechnoy passivnoy sistemy. Spetstekhnika i svyaz', 2, 27–29.

Potapova, T. P., Toporkov, N. V., Shabatura, Y. M. (2010). Algoritm opredeleniya koordinat istochnikov radioizlucheniya s letatel'nogo apparata na osnove fazovo-vremennoy signal'noy informatsii ot dvukh priyemnykh moduley. Vestnik MGTU im. N. E. Baumana, 1, 52–61.

Khudov, H. (2020). The Synthesis of the Optimal Decision Rule for Detecting an Object in a Joint Search and Detection of Objects by the Criterion of Maximum Likelihood. International Journal of Emerging Trends in Engineering Research, 8 (2), 520–524. doi: https://doi.org/10.30534/ijeter/2020/40822020

Khudov, H., Lishchenko, V., Lanetskii, B., Lukianchuk, V., Stetsiv, S., Kravchenko, I. (2020). The Coherent Signals Processing Method in the Multiradar System of the Same Type Two-coordinate Surveillance Radars with Mechanical Azimuthal Rotation. International Journal of Emerging Trends in Engineering Research, 8 (6), 2624–2630. doi: https://doi.org/10.30534/ijeter/2020/66862020

Liang, J., Wang, D., Su, L., Chen, B., Chen, H., So, H. C. (2016). Robust MIMO radar target localization via nonconvex optimization. Signal Processing, 122, 33–38. doi: https://doi.org/10.1016/j.sigpro.2015.11.004

Li, Z., Chung, P.-J., Mulgrew, B. (2017). Distributed target localization using quantized received signal strength. Signal Processing, 134, 214–223. doi: https://doi.org/10.1016/j.sigpro.2016.12.003

Poli, R. (2008). Analysis of the Publications on the Applications of Particle Swarm Optimisation. Journal of Artificial Evolution and Applications, 2008, 1–10. doi: https://doi.org/10.1155/2008/685175

Piotrowsky, L., Jaeschke, T., Kueppers, S., Siska, J., Pohl, N. (2019). Enabling High Accuracy Distance Measurements With FMCW Radar Sensors. IEEE Transactions on Microwave Theory and Techniques, 67 (12), 5360–5371. doi: https://doi.org/10.1109/tmtt.2019.2930504

Shin, S.‐J. (2017). Radar measurement accuracy associated with target RCS fluctuation. Electronics Letters, 53 (11), 750–752. doi: https://doi.org/10.1049/el.2017.0901

Cho, I.-S., Lee, Y., Baek, S. J. (2020). Real-Time Inter-Vehicle Data Fusion Based on a New Metric for Evidence Distance in Autonomous Vehicle Systems. Applied Sciences, 10 (19), 6834. doi: https://doi.org/10.3390/app10196834

Oleksenko, O., Khudov, H., Petrenko, K., Horobets, Y., Kolianda, V. et. al. (2021). The Development of the Method of Radar Observation System Construction of the Airspace on the Basis of Genetic Algorithm. International Journal of Emerging Technology and Advanced Engineering, 11 (8), 23–30. doi: https://doi.org/10.46338/ijetae0821_04

Khudov, H., Yuzova, I., Lisohorskyi, B., Solomonenko, Y., Mykus, S., Irkha, A. et. al. (2021). Development of methods for determining the coordinates of firing positions of roving mortars by a network of counter-battery radars. EUREKA: Physics and Engineering, 3, 140–150. doi: https://doi.org/10.21303/2461-4262.2021.001821

Li, J., Stoica, P. (Eds.) (2008). MIMO radar signal processing. John Wiley & Sons. doi: https://doi.org/10.1002/9780470391488


👁 70
⬇ 62
Published
2022-05-31
How to Cite
Khudov, H., Zvonko, A., Lisohorskyi, B., Solomonenko, Y., Mynko, P., Glukhov, S., Irkha, A., Lishchenko, V., Mishchenko, Y., & Khudov, V. (2022). Development of a rangefinding method for determining the coordinates of targets by a network of radar stations in counter-battery warfare. EUREKA: Physics and Engineering, (3), 121-132. https://doi.org/10.21303/2461-4262.2022.002380
Section
Mathematics

Most read articles by the same author(s)