A METHOD FOR OPTIMIZING CHEMICAL COMPOSITION OF STEELS TO REDUCE RADICALLY THEIR ALLOY ELEMENTS AND INCREASE SERVICE LIFE OF MACHINE COMPONENTS

  • Nikolai Kobasko Intensive Technologies Ltd
Keywords: steel chemistry, service life, reduced cost, carburizing elimination, natural gas savings

Abstract

A method for optimizing chemical composition of steel is proposed and a correlation is established to reduce cardinally alloy elements in existing steel grades that results in high compressive residual stresses at the surface of intensively quenched steel parts and increasing strength and ductility of material due to super- strengthening phenomenon. The algorithm of optimization consists in reducing alloy elements in existing alloy steel in 1.5 – 2 times and then lowering step-by-step content of steel, beginning from the most costly alloy element and ending the most cheaper one, until established correlation is satisfied. The range of reduction is minimal and during computer calculations can be chosen as 0,001wt%. The proposed approach can save alloy elements, energy, increase service life of machine components and improve environmental condition. The method is a basis for development of the new low hardenability (LH) and optimal hardenability (OH) steels.

Downloads

Download data is not yet available.

References

Kobasko, N. I. (2005). Quench Process Optimization for Receiving Super Strong Materials. Proceedings of the 5th WSEAS Int. Conference on simulation, modeling and optimization, 365–372.

Kobasko, N. I. (2005). Quench Process Optimization, Proc. of 6th International Conference “Equipment and Technologies for Heat Treatment of Metals and Alloys. Part I”, 88–96.

Kobasko, N. I.; Bozo, S., Heimo, J., Vojteh, L. (Eds.) (2005). The main principles of intensive quenching of tools and dies, Proc. of the 1th International Conference on Heat Treatment and Surface Engineering of Tools and Dies, 39–44.

Grossmann, M. A. (1964). Principles of Heat Treatment. Ohio: American Society for Metals, 302.

Totten, G. E., Bates, C. E., Clinton, N. A. (1993). Handbook of quenchants and quenching technology. ASM international, 513.

Kobasko, N. I. (2002). Patent US 6,364,974 B2. Quenching apparatus and method for hardening steel parts. Assignee: IQ Technologies, Inc. Appl. № 09/551,082. Filed 18.04.2000. Available at: http://patents.com/us-6364974.html

Shepelyakovskii, K. Z. (1972). Strengthening of Machine Components by Induction Surface Hardening. Moscow: Mashinostroenie, 288.

Shepelyakovskii, K. Z., Ushakov, B. K. (1990, December). Induction surface hardening–progressive technology of XX and XXI centuries. In Proc. 7th Int. Congress on Heat treatment and technology of surface coatings, 33–40.

Ouchakov, B., Shepeljakovsky, K. (1998). New Steels and Methods for Induction Hardening of Bearing Rings and Rollers. Bearing Steels: Into the 21st Century, 307–307–14. doi: 10.1520/stp12136s

Shepelyakovswkii, K. Z., Bezmenov, F. V. (1998). New Induction Hardening Technology. Advanced Materials & Processes, 154 (4), 225–227.

Ushakov, B. K., Efremov, V. N., Kolodjagny, V. V., Skryagin, V. I., Dub, L. G. (1991). New Compositions of Bearing Steels of Controlled Hardenability. Stal', 10, 62–65.

Kobasko, N. I., Morganyuk, V. S. (1983). Study of Thermal and Stress-Strain State at Heat Treatment of Machine Parts. Kyiv: Znanie, 16.

Kobasko, N. I., Morganyuk, V. S. (1985). Numerical Study of Phase Changes, Current and Residual Stresses at Quenching Parts of Complex Configuration. Proceedings of the 4th International Congress of Heat Treatment Materials, 465–486.

Kobasko, N. (2010). Intensive Steel Quenching Methods. Quenching Theory and Technologyю Second Edition. CRC Press, 510–568. doi: 10.1201/9781420009163-c15

Morhuniuk, W. S., Ushakov, B. K., Kobasko, N. I. (2004). Design of Steel-Intensive Quench Processes. Handbook of Metallurgical Process Design. CRC Press, 733–764. doi: 10.1201/9780203970928.ch17

Kobasko, N. I., Morganyuk, V. S., Dobrivecher, V. V. (2002). Control of Residual Stress Formation and Steel Deformation During Rapid Heating and Cooling. Handbook of Residual Stress and Deformation of Steel. Materials Park: ASM International, 312–330.

Liscic, B., Tensi, H., Canale, L., Totten, G. (Eds.) (2010). Quenching Theory and Technology, Second Edition. CRC Press, 725. doi: 10.1201/9781420009163

Xie, L., Funatani, K., Totten, G. (Eds.) (2004). Handbook of Metallurgical Process Design. CRC Press, 957. doi: 10.1201/9780203970928

Neklyudov, I. M., Shulayev, V. M. (2005). Equipment and Technologies for Heat Treatment of Metals and Alloys. Proc. of 6th International Conference, 295.

Sahay, S. S., Sarmiento, G. S. (Eds.) (2013). Special Issue on Thermal Process Modeling, Simulation and Optimization. ASTM International, W. Conshohocken, 459.

Mastorakis, N., Mladenov, V., Bojkovic, Z. (Eds.) (2010). New Aspects of Fluid Mechanics, Heat Transfer & Environment. WSEAS Press, 385.

Kobasko, N. (2012). Steels of optimal chemical composition combined with intensive quenching. International Heat Treatment and Surface Engineering, 6 (4), 153–159. doi: 10.1179/1749514812z.00000000032

Kobasko, N. I. (2011). Correlation Between Chemical Composition of Steel, Optimal Hardened Layer, and Optimal Residual Stress Distribution. Film and Nucleate Boiling Processes, 81–102. doi: 10.1520/stp153420120005

Kobasko, N. I. (2008). The steel superstrengthening phenomenon, part 2. International Journal of Microstructure and Materials Properties, 3 (4/5), 526–547. doi: 10.1504/ijmmp.2008.022034

Kobasko, N. I. (1980). Steel Quenching in Liquid Media under Pressure. Kyiv: Naukova Dumka, 206.

Liscic, B., Tensi, H. M., Luty, W. (Eds.) (1992). Theory and Technology of Quenching. Springer-Verlag Berlin Heidelberg, 484. doi:10.1007/978-3-662-01596-4

Kim, T., Kobasko, N. I., Liu, Y., Nayar, A. (2006). Worldwide Guide to Equivalent Irons and Steels. Materials Park: ASM International, 1387.

Dossett, J. L., Totten, G. E. (Eds.) (2013). Steel Heat Treating Fundamentals and Processes Vol. 4A. Materials Park: ASM International, 768.

Powell, J. A. (2013). Basics of IQ Process, Presentation at Intensive Quenching Workshop, Cleveland, Ohio, USA.

Kobasko, N. I. (2016). Improvement of iq – 3 processes to eliminate crack formation, decrease distortion, and maximize material strength, and ductility. Eureka: Physics and Engineering, 4, 3–10. doi: 10.21303/2461-4262.2016.000122

Yu, W. (Ed.) (2009). Recent Advances in Intelligent Control Systems. London: Springer, 374. doi: 10.1007/978-1-84882-548-2

Mastorakis, N., Demiralp, M., Mladenov, V. M., Zemliak, A. et al. (2011). Computers and Simulation in Modern Science. WSEAS Press, 238.

Totten, G. E. (Ed.) (2002). Handbook of residual stress and deformation of steel. ASM international, 498.

Totten, G. E. (2006). Steel Heat Treatment Handbook, Second Edition. CRC Press, 1077.

Ravnik, F., Grum, J., Prabhu, N., Kobasko, N., Dean, S. W. (2011). Heat Transfer Stages Recognition by Boiling Acoustic During Quenching. Journal of ASTM International, 8 (1), 103386. doi: 10.1520/jai103386

Grum, J., Bozic, S. (2003). Acoustic emission during quenching of 42 CrMo 4 steel. In 4 th International Conference on Quenching and Control of Distortion, 267–272.

Kichigin, A. M., Kobasko, N. I., Povsten, S. G., Tyltin, A. A., Timchenko, N. P. (1990). Patent 4605186/31-02. Method for Control of Steel Parts Heat Treatment. Assignee: Bayer Materialscience Ag. Appl. № 621.785.79(088.8). Filed 14.11.1988. Available at: http://www.findpatent.ru/patent/159/1595928.html

Kobasko, N., Aronov, M., Powell, J., Totten, G. (2010). Intensive Quenching Systems: Engineering and Design. ASTM International, 242. doi: 10.1520/mnl64-eb

Shepeliakovskii, K. Z., Lobozov, V. P., Kuznetsov, A. A., Nikitin, S. I., Kamenskih, A. A., Karpov, A. A., Zelenov, V. N., Ezubchenko, V. N. (2000). Patent RF 2158320. Konstruktsionnaia STAL ponizhennoi prokalivaemosti. Assignee OAO "Chusovskoi metallurgicheskii zavod". Appl. № 99125102/02. Filed 29.11.1999. Available at: http://ru-patent.info/21/55-59/2158320.html

Kobasko, N. I. (2010). Energy Efficient and Eco-friendly Intensively Quenched Limited Hardenability Low Alloy Steels. Advances in the State of the Art of Fire Testing, 644–644-18. doi: 10.1520/stp49177s

Kobasko, N. (2007). Limited – Hardenability Steels and New Heat Treating Technologies. Material Science & Technology 2007 Conference and Exhibition (MS&T’07), 471–480.

Munnig, J., Pennemann, B., Rausch, A. K. (2012). Patent RU 2450060. Method of thermal treatment of parts from structural steel of lower and regulated hardenability. Assignee: Scientific and Production Company Technology Engineering and Space-surface hardening. Appl. 2010154543/02. B 13. Filed 31.12.2010.

Bhadeshia, H. K. D. H. (2015). Bainite in Steels: Theory and Practice. 3rd edition. Money Publishing, 616.

Rath, J., Lübben, T., Hunkel, M., Hoffmann, F., Zoch, H. W. (2009). Grundlegende Untersuchungen zur Erzeugung von Druckeigenspannungen durch Hochgeschwindigkeits-Abschrecken. HTM Journal of Heat Treatment and Materials, 64 (6), 338–350. doi: 10.3139/105.110037

Rath, J., Lubben, T., Hoffmann, F., Zoch, H. W. (2010). Generation of compressive residual stresses by high speed water quenching. International Heat Treatment and Surface Engineering, 4 (4), 156–159. doi: 10.1179/174951410x12851626812970

Zoch, H. W., Schneider, R., Luebben, T. (2014). Proc. of European Conference on Heat Treatment and 21st IFHTSE Congress. Munich (Germany), 566.

Kondratjev, G. M. (1957). Teplovye Izmereniya [Thermal Measurements]. Moscow: Mashgiz, 8.

Lykov, A. V. (1967). Teoriya Teploprovodnosti [Theory of Heat Conductivity]. Moscow: Vysshaya Shkola, 600.

Aronov, A., Kobasko, N. I., Powell, J., Kim, H., O’Rourke, B., Andreski, B. (2015). Application of Intensive Quenching Process for Steel Mill Rolls Made of Ductile Iron. The MS&T, Material Science & Technology Conference and Exhibition, 4–8.


👁 647
⬇ 338
Published
2017-01-31
How to Cite
Kobasko, N. (2017). A METHOD FOR OPTIMIZING CHEMICAL COMPOSITION OF STEELS TO REDUCE RADICALLY THEIR ALLOY ELEMENTS AND INCREASE SERVICE LIFE OF MACHINE COMPONENTS. EUREKA: Physics and Engineering, (1), 3-12. https://doi.org/10.21303/2461-4262.2017.00253
Section
Material Science

Most read articles by the same author(s)

1 2 > >>