Study of a local source of autonomous power supply on the basis of a diesel generator

Keywords: diesel generator, autonomous power supply system, internal combustion engine, asynchronous generator, electrical energy consumers

Abstract

A mathematical model of a local autonomous power supply source based on a diesel generator set is presented. The source of primary mechanical energy is a diesel internal combustion engine with an automatic speed controller, operating on the Polzunov–Watt’s principle. The electric energy converter is an asynchronous motor operating in a generator mode with capacitor self-excitation. The complete set of such devices is carried out from the available and normally working components of technological, electrical and transport equipment. They are formed by the personnel of the relevant enterprises in the period preceding the accident, during its development or at the end of its active phase. Therefore, mathematical models of subsystems of a diesel engine, an asynchronous machine operating in a generator mode, capacitive self-excitation and a number of typical electricity consumers are represented by separate structural blocks with functional relationships and connected according to the principle of subordinate regulation. This form of representation makes it possible to carry out large-scale studies of the qualitative and quantitative indicators of the operation of diesel generator sets with various types of both internal combustion engines and asynchronous machines. The coincidence of the results of numerical simulation and full-scale experiments allows to judge the adequacy of the proposed mathematical model of a local autonomous power supply source with a diesel generator. The presented model combines algorithmic simplicity and high computational precision and will make it possible to determine the criteria for the trouble-free operation of autonomous power supply sources to provide energy to consumers of different categories

Downloads

Download data is not yet available.

Author Biographies

Iurii Zachepa, Kremenchuk Mykhailo Ostrohradskyi National University

Department of Systems of Automatic Control and Electric Drive

Volodymyr Chenchevoi, Kremenchuk Mykhailo Ostrohradskyi National University

Department of Systems of Automatic Control and Electric Drive

Nataliia Zachepa, Kremenchuk Mykhailo Ostrohradskyi National University

Department of Systems of Automatic Control and Electric Drive

Olga Chencheva, Kremenchuk Mykhailo Ostrohradskyi National University

Department of Manufacturing Engineering

Serhii Serhiienko, Kremenchuk Mykhailo Ostrohradskyi National University

Department of Systems of Automatic Control and Electric Drive

References

Beliaev, L., Marchenko, O., Filippov, S. P., Solomin, S., Stepanova, T., Kokorin, A. (2000). Mirovaia energetika i perekhod k ustoichivomu razvitiiu. Novosibirsk: Nauka, 300. Available at: https://publications.hse.ru/books/202818748
Artamonov, V. V., Maslov, V. E., Rodkin, D. I., Soltus, A. P. (2001). K voprosu o sozdanii formiruemykh istochnikov avariinogo elektropitaniia. Problemy sozdaniia novykh mashin i tekhnologii, 1, 114–119.
Rykov, G. Iu. (2010). Searching ways to improve reliability of power supply systems for small and medium consumers. Vіsnik KDU іmenі Mikhaila Ostrogradskogo, 3 (62 (2)), 112–116. Available at: http://www.kdu.edu.ua/statti/2010-3-2(62)/PDF_3_2010_ch2/112.PDF
Borisenko, A. N., Litvinenko, S. A., Khalanskaya, E. V., Gusel'nikov, A. V. (2010). Mathematical design of diesel-generator as an object of adjusting of speed taking into account casual character of its deviation, measuring of phases of serves of fuel and additional providion with air. Herald of the National Technical University "KhPI". Subject issue: Information Science and Modelling, 21, 4–11. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/24195/1/vestnik_HPI_2010_21_Borisenko_Matematicheskoe.pdf
Golubev, A. N., Bykov, A. V. (2008). Mathematical model of diesel-electrical transfer based on asynchronous machines with autonomous voltage inverter. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta, 4, 1–5. Available at: http://игэу.рф/files/str._73-77.pdf
Duraev, N. N., Obukhov, S. G., Plotnikov, I. A. (2013). Imitatcionnaia model dizelnogo dvigatelia dlia issledovaniia ego rabochikh kharakteristik na peremennoi chastote vrashcheniia. Izvestiia Tomskogo politekhnicheskogo universiteta, 322 (4), 48–52. Available at: https://portal.tpu.ru/SHARED/s/SEROB/spisoktr3/Tab/Immitac_model_DD.pdf
Orlovskii, I. A. (2010). Mathematical models of diesel and synchronous generator of diesel train traction electric drive on neural net. Tekhnіchna elektrodinamіka, 2, 62–72. Available at: http://dspace.nbuv.gov.ua/handle/123456789/61877
Broomhead, T. J. (2016). A Model Based Approach to the Control of Diesel Generators. Department of Mechanical Engineering The University of Melbourne. Available at: https://minerva-access.unimelb.edu.au/items/ea1b2e84-0a6b-5244-800d-0b89ed6b3ba8
Sebastián, R. (2021). Review on Dynamic Simulation of Wind Diesel Isolated Microgrids. Energies, 14, 1812. doi: http://doi.org/10.3390/en14071812
Bikash Das, Mukherjee V. Dynamic Modeling and Simulation of Diesel Generator for Stand-alone and Grid Connected Mode of Operation. Alternative Energy And Distributed Generation Journal, vol. 1, no. 1. January 2019. https://www.researchgate.net/publication/339044492_Dynamic_Modeling_and_Simulation_of_Diesel_Generator_for_Stand-alone_and_Grid_Connected_Mode_of_ Operation
Jindal, A., Gole, A., Muthumuni, D. (2008). Modeling and Performance Analysis of an Integrated Wind/Diesel Power System for Off-Grid Locations. Engineering, Environmental Science. Available at: https://www.semanticscholar.org/paper/Modeling-and-Performance-Analysis-of-an-Integrated-Jindal-Gole/9db0959a855c29a9b243334198a690769a03adc5#related-papers
Wang, D. H., Nayar, C. V., Wang, C. (2010). Modeling of stand-alone variable speed diesel generator using doubly-fed induction generator. The 2nd International Symposium on Power Electronics for Distributed Generation Systems. doi: http://doi.org/10.1109/pedg.2010.5545769
Zhang, D., Cui, J. (2015). Modeling and Simulation of the Emergency Diesel Generator Based on MATLAB. Chapter 1. Available at: https://www.springerprofessional.de/en/modeling-and-simulation-of-the-emergency-diesel-generator-based-/2345258
Grunauer, A. A., Dolgikh, I. D. (1989). Primenenie EVM dlia izucheniia dinamiki SAR DVS. Kyiv: UMKVO, 285.
Krutov, V. I. (1968). Avtomaticheskoe regulirovanie dvigatelei vnutrennego sgoraniia. Moscow: Mashinostroenie, 535.
Chornyi, O. P., Luhovyi, A. V., Rodkin, D. Y., Sysiuk, H. Yu., Sadovoi, O. V. (2001). Modeliuvannia elektromekhanichnykh system. Kremenchuk, 410. Available at: https://elprivod.nmu.org.ua/files/modeling/%D0%A7%D0%BE%D1%80%D0%BD%D0%B8%D0%B9_%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1%8E%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F%20%D0%95%D0%9C%D0%A1.pdf
Jung, J.-W., Keyhani, A. (2008). Fuel cell based distributed generation system. 2008 12th International Middle-East Power System Conference. doi: http://doi.org/10.1109/mepcon.2008.4562358
Wu, C.-I., Siao, J.-Y., Nguyen, M.-T., Hong, Y.-Y., Chang, Y.-R., Lee, Y.-D., Wang, S.-S. (2018). Studies on Operation Modes of Diesel Generators in a Standalone Power System. 2018 4th International Conference on Green Technology and Sustainable Development (GTSD). doi: http://doi.org/10.1109/gtsd.2018.8595556
Sajadi, A., Loparo, K., Roslaniec, L., Klos, M. (2019). Power Sharing Based Control of Hybrid Wind-Diesel Standalone Systems. IEEE EUROCON 2019 -18th International Conference on Smart Technologies. doi: http://doi.org/10.1109/eurocon.2019.8861981
Bhol, S., Charansahu, N. (2020). Performance Analysis and Cost Calculation of Standalone PV-DG Generation System Without Storage. 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE). doi: http://doi.org/10.1109/cispsse49931.2020.9212216
Marra, E. G., Pomilo, J. A. (2000). Induction generator based system providing regulated voltage with constant frequency. IEEE Transactions on Industrial Electronics, 47 (4), 908–914. doi: http://doi.org/10.1109/41.857971
Zagirnyak, M., Zachepa, Iu., Chornyi, O., Chenchevoi, V. (2019). The autonomous sources of energy supply for the liquidation of technogenic accidents. Przeglad Elektrotechniczny, 95 (5), 47–50. doi: http://doi.org/10.15199/48.2019.05.12
Zagirniak, M. V., Zachepa, Iu. V., Rodkin, D. I., Chernyi, A. P., Chenchevoi, V. V. (2018). Elektroprivody s energosnabzheniem ot avtonomnykh asinkhronnykh generatorov. Kremenchug: ChP Shcherbatykh A. V., 199. Available at: http://www.kdu.edu.ua/new/PHD_vid/Elecrtoprivodu_Zahepa.pdf
Chornyi, O. P., Zachepa, I. V., Mazurenko, L. I., Buryakovskiy, S.G., Chenchevoi, V. V., Zachepa, N. V. (2020). Local autonomous sources of energy supply for emergencies. Technical Electrodynamics, 5, 45–48. doi: http://doi.org/10.15407/techned2020.05.045
Zagirnyak, M., Zachepa, Iu., Chenchevoi, V. (2014). Estimation of induction generator overload capacity under connected direct current consumers. Acta Technica, 59 (2), 149–169. Available at: https://www.researchgate.net/publication/289190527
Zachepa, I., Zachepa, N., Khrebtova, O., Serhiienko, I., Shokarov, D., Mykhalchenko, G. (2021). Guaranteed and Reliable Excitation of Asynchronous Generator Coupled to Shaft of Vehicle. 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES). doi: http://doi.org/10.1109/mees52427.2021.9598649
Study of a local source of autonomous power supply on the basis of a diesel generator

👁 153
⬇ 140
Published
2022-11-29
How to Cite
Zachepa, I., Chenchevoi, V., Zachepa, N., Chencheva, O., & Serhiienko, S. (2022). Study of a local source of autonomous power supply on the basis of a diesel generator. EUREKA: Physics and Engineering, (6), 56-73. https://doi.org/10.21303/2461-4262.2022.002566
Section
Engineering

Most read articles by the same author(s)